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CLINICAL REVIEW

Psoriasis is a chronic heterogeneous condition with multiple avail-
able treatment options that have resulted in dramatic disease 
improvements for patients. IL-23/IL-17 signaling is the central 
immune signaling pathway driving psoriasis, though recent research 
has uncovered other key contributing signals such as IL-17C,  
IL-17F, IL-36, and tyrosine kinase 2 (TYK2). Novel therapeutic tar-
gets inhibiting these cytokines have expanded our understanding 
of the pathogenesis of psoriasis. IL-23/IL-17 signaling is critical for 
the development of epidermal hyperplasia and the mature psoriatic 

plaque in susceptible individuals. Increased IL-17 and IL-23 expres-
sion works synergistically with other cytokines, such as IL-12, IL-22, 
IL-36, tumor necrosis factor (TNF), and interferon (IFN), to help cre-
ate a self-sustaining, feed-forward circuit in keratinocytes, which 
contributes to the chronicity of the disease. This clinical review 
highlights recent discoveries in the immunopathogenesis of psoriasis 
and summarizes new antipsoriasis therapies targeting IL-36, IL-17F, 
aryl hydrocarbon receptors (AHRs), phosphodiesterase 4 (PDE4), 
and TYK2 signaling. Despite recent success in the treatment of 
psoriasis, continued research is needed to further advance disease 
understanding and shape management strategies.

Cutis. 2024;113:82-91, E3.

P soriasis is a chronic inflammatory disease that 
affects approximately 3% of the US popula-
tion.1 Plaque psoriasis comprises 80% to 90% of 

cases, while pustular, erythrodermic, guttate, inverse, 
and palmoplantar disease are less common variants  
(Figure 1). Psoriatic skin manifestations range from local-
ized to widespread or generalized disease with recurrent 
flares. Body surface area or psoriasis area and severity index 
(PASI) measurements primarily focus on skin manifesta-
tions and are important for evaluating disease activity and 
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PRACTICE POINTS
•	 �Psoriasis is a chronic inflammatory condition 

characterized by systemic inflammation and 
dysregulated IL-23/IL-17 signaling.

•	 �Modern discoveries highlight the role of additional 
immune signals in psoriatic disease such as IL-17C, 
IL-17F, IL-36, and tyrosine kinase 2, which also 
contribute to disease development.

•	 �Novel systemic, oral, and topical therapies have 
become available and add to the rapidly growing 
armamentarium of safe and effective treatments for 
psoriatic disease.

Copyright Cutis 2024. No part of this publication may be reproduced, stored, or transmitted without the prior written permission of the Publisher.

CUTIS
 D

o not c
opy



UPDATE ON PSORIASIS

VOL. 113 NO. 2  I  FEBRUARY 2024  83WWW.MDEDGE.COM/DERMATOLOGY

response to treatment, but they have inherent limitations: 
they do not capture extracutaneous disease activity, sys-
temic inflammation, comorbid conditions, quality of life 
impact, or the economic burden of psoriasis.

A common manifestation of psoriasis is psoriatic 
arthritis (PsA), which can involve the nails, joints,  
ligaments, or tendons in 30% to 41% of affected individu-
als (Figure 2).2,3 A growing number of psoriasis-associ-
ated comorbidities also have been reported including  
metabolic syndrome4; hyperlipidemia5; cardiovascular  
disease6; stroke7; hypertension8; obesity9; sleep disorders10;  
malignancy11; infections12; inflammatory bowel disease13; 
and mental health disorders such as depression,14 anxi-
ety,15 and suicidal ideation.15 Psoriatic disease also inter-
feres with daily life activities and a patient’s overall 
quality of life, including interpersonal relationships, 
intimacy, employment, and work productivity.16 Finally, 
the total estimated cost of psoriasis-related health care 

is more than $35 billion annually,17 representing a sub-
stantial economic burden to our health care system and 
individual patients. 

The overall burden of psoriatic disease has declined 
markedly in the last 2 decades due to revolutionary advances 
in our understanding of the immunopathogenesis of  
psoriasis and the subsequent development of improved 
therapies that predominantly interrupt IL-23/IL-17 cytokine 
signaling; however, critical knowledge and treatment gaps 
persist, underscoring the importance of ongoing clinical and 
research efforts in psoriatic disease. We review the working 
immune model of psoriasis, summarize related immune 
discoveries, and highlight recent therapeutic innovations 
that are shaping psoriatic disease management. 

Current Immune Model of Psoriatic Disease
Psoriasis is an autoinflammatory T cell–mediated disease 
with negligible contributions from the humoral immune 

FIGURE 1. A and B, Characteristic 
plaque psoriasis of the trunk.  
C, Inverse psoriasis involving the 
inframammary folds. D, Guttate 
psoriasis in an adult following 
streptococcal infection.
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response. Early clinical observations reported increased 
inflammatory infiltrates in psoriatic skin lesions primar-
ily consisting of both CD4+ and CD8+ T-cell popula-
tions.18,19 Additionally, patients treated with broad-acting, 
systemic immunosuppressive medications (eg, cyclo-
sporine, oral corticosteroids) experienced improvement 
of psoriatic lesions and normalization of the immune 
infiltrates observed in skin biopsy specimens.20,21 These 
early clinical findings led to more sophisticated experi-
mentation in xenotransplant models of psoriasis,22,23 
which explored the clinical efficacy of several less immu-
nosuppressive (eg, methotrexate, anti–tumor necrosis  
factor [TNF] biologics)24 or T cell–specific agents  
(eg, alefacept, abatacept, efalizumab).25-27 The results of 
these translational studies provided indisputable evi-
dence for the role of the dysregulated immune response 
as the primary pathogenic process driving plaque for-
mation; they also led to a paradigm shift in how the 
immunopathogenesis of psoriatic disease was viewed 
and paved the way for the identification and targeting of 
other specific proinflammatory signals produced by acti-
vated dendritic cell (DC) and T-lymphocyte populations.  
Among the psoriasis-associated cytokines subsequently 
identified and studied, elevated IL-23 and IL-17 cyto-
kine levels in psoriatic skin were most closely associated 
with disease activity, and rapid normalization of IL-23/
IL-17 signaling in response to effective oral or injectable 
antipsoriatic treatments was the hallmark of skin clear-
ance.28 The predominant role of IL-23/IL-17 signaling in 
the development and maintenance of psoriatic disease is 
the central feature of all working immune models for this 
disease (Figure 3).

Psoriasis-Associated Genetic and  
Environmental Risk Factors
The exact sequence of events that lead to the initiation 
and formation of plaque psoriasis in susceptible individu-
als is still poorly understood; however, several important 
risk factors and key immune events have been identified. 
First, decades of genetic research have reported more than 
80 known psoriasis-associated susceptibility loci,29 which 

explains approximately 50% of psoriasis heritability. The 
major genetic determinant of psoriasis, HLA-C*06:02 (for-
merly HLA-Cw6), resides in the major histocompatibility 
complex class I region on chromosome 6p21.3 (psoriasis 
susceptibility gene 1, PSORS1) and is most strongly asso-
ciated with psoriatic disease.30 Less common psoriasis-
associated susceptibility genes also are known to directly 
or indirectly impact innate and adaptive immune functions 
that contribute to the pathogenesis of psoriasis. 

Second, several nongenetic environmental risk factors 
for psoriasis have been reported across diverse patient 
populations, including skin trauma/injury, infections, 
alcohol/tobacco use, obesity, medication exposure (eg, 
lithium, antimalarials, beta-blockers), and stress.31 These 
genetic and/or environmental risk factors can trigger the 
onset of psoriatic disease at any stage of life, though most 
patients develop disease in early adulthood or later (age 
range, 50–60 years). Some patients never develop psoria-
sis despite exposure to environmental risk factors and/or 
a genetic makeup that is similar to affected first-degree 
relatives, which requires further study.

Prepsoriatic Skin and Initiation of  
Plaque Development
In response to environmental stimuli and/or other trig-
gers of the immune system, DC and resident IL-17–
producing T-cell (T17) populations become activated in 
predisposed individuals. Dendritic cell activation leads 
to the upregulation and increase of several proinflamma-
tory cytokines, including TNF, interferon (IFN) α, IFN-γ, 
IL-12, and IL-23. Tumor necrosis factor and IL-23 play a  
vital role in psoriasis by helping to regulate the polar-
ization and expansion of T22 and T17 cells in the skin, 
whereas IL-12 promotes a corresponding type 1 inflam-
matory response.32 Increased IL-17 and IL-22 result in 
alteration of the terminal differentiation and proliferative 
potential of epidermal keratinocytes, leading to the early 
clinical hallmarks of psoriatic plaques. The potential con-
tribution of overexpressed psoriasis-related autoantigens, 
such as LL-37/cathelicidin, ADAMTSL5, and PLA2G4D,33 
in the initiation of psoriatic plaques has been suggested 
but is poorly characterized.34 Whether these specific  
autoantigens or others presented by HLA-C variants 
found on antigen-presenting cells are required for the 
breakdown of immune tolerance and psoriatic disease 
initiation is highly relevant but requires further investiga-
tion and validation.

Feed-Forward Inflammation, Mature Psoriatic 
Plaques, and Resident Memory T Cells 
In response to the upstream production of IL-23 by der-
mal DCs, high levels of IL-17 cytokines can be found in 
mature psoriatic plaques. The IL-17 family consists of  
6 dimeric cytokines (IL-17A through IL-17F) that provide 
innate cutaneous protection against bacterial, viral, and 
fungal infectious agents, such as Candida albicans. Unlike 
other IL-17 isoforms, IL-17A and IL-17F share the same 

FIGURE 2. Clinical manifestation of psoriatic arthritis involving the 
metacarpal joints of the hands.
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receptor complex and have the highest structural homol-
ogy of any pair (approximately 50% similar).35 The relative 
expression of IL-17F is higher than IL-17A in psoriasis,36 
though IL-17A has been considered as the predominant 
IL-17 cytokine found in psoriatic skin lesions due to its 
higher potency. 

Binding of IL-17A/F with the IL-17 receptor (IL-17R) 
on keratinocytes contributes to the development of 
psoriatic plaques by inducing epidermal hyperplasia via 
activation of CCAAT/enhancer-binding proteins β and 
δ, nuclear factor κB, and signal transducer and activator 
of transcription 1 gene (STAT1).37,38 This also increases 
the expression of other keratinocyte-derived proteins  
(eg, human β-defensins, S-100 proteins, LL-37, other 
antimicrobial peptides, IL-19, IL-36, IL-17C) that act 
as reinforcing proinflammatory signals or chemotactic 
factors (eg, chemokine [C-C motif] ligand 20 [CCL20], 
chemokine [C-C motif] ligand 1/2/3/5 [CXCL1/2/3/5], 
CXCL8, IL-8) that facilitate the recruitment of addi-
tional immune cells to the skin including polymorpho-
nuclear neutrophils (PMNs), macrophages, and DCs.39-41 
Routine immunohistochemical staining for these kerati-
nocyte-derived proteins reveals a striking epidermal gene 

expression gradient wherein levels of IL-17–induced pro-
teins are most highly expressed in the uppermost layers 
of keratinocytes and facilitate the recruitment of immune 
cells into the epidermis. Activated T17 cells also stimulate 
the production of keratinocyte-derived chemokines (eg, 
CXCL9/10/11), which recruit type 1 inflammatory T-cell 
populations into developing psoriatic plaques.42,43 Finally, 
TNF, IL-36, and IL-17C cytokines act synergistically with 
IL-17A/F to amplify the proinflammatory effects of IL-17 
signaling and further stimulate their production from 
T17 cell populations.40 This inflammatory circuit in the 
skin creates and supports a self-amplifying or positive 
feedback loop between the skin and immune system that 
commonly is referred to as feed-forward inflammation 
(Figure 3).34 The feed-forward inflammatory loop in pso-
riasis—predominantly driven by increased IL-23/IL-17 
signaling—best characterizes the mature psoriatic plaque.

Several findings suggest that the influx of persis-
tent, long-lived resident memory T cells (Trms) may 
contribute to the mature psoriatic plaque. It is believed 
that CD8+CD103+CD49a− Trm cell populations may 
be responsible for the sharply demarcated borders of 
untreated psoriasis plaques or their recurrence at specific 

Genetically susceptible 
individual with psoriasis 
trigger exposure  
and/or loss of  
immune tolerance

Increased IL-17 drives KC 
hyperproliferation resulting 
in the hallmark features of 
psoriatic plaques (scale, 
epidermal hyperplasia,  

and inflammation)
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FIGURE 3. Working immune model of psoriasis. Early immune events include activation of dendritic cells (DCs) and IL-17–producing T cells 
(T17) in the prepsoriatic (or normal-appearing) skin of individuals who are genetically susceptible and/or have exposures to known psoriasis 
triggers. Activation of DC and T17 populations in the skin results in increased production of tumor necrosis factor (TNF), IL-23, and IL-17 
cytokines (namely IL-17A and IL-17F), which work synergistically with other immune signals (IL-12, IL-22, IL-36, TNF, interferon [IFN]) to 
drive keratinocyte (KC) hyperproliferation. In response to upregulated IL-17 signaling, substantial increases in keratinocyte-derived proteins 
(antimicrobial peptides, IL-19, IL-36, IL-17C) and chemotactic factors (chemokine [C-C motif] ligand 20 [CCL20], chemokine [C-C motif] ligand 
1/2/3/5/8 [CXCL1/2/3/5/8][or IL-8]) facilitate further activation and recruitment of T17 and helper T cell (TH1) lymphocytes, DCs, macrophages, 
and polymorphonuclear neutrophils (PMNs) into the skin. The resultant inflammatory circuit creates a self-amplifying or feed-forward immune 
response in the skin that leads to the hallmark clinical features of psoriasis and sustains the mature psoriatic plaque.
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body sites such as the scalp, buttocks, extremity exten-
sor surfaces, umbilicus, or acral skin following specific 
stimuli or trauma (Koebner phenomenon or isomorphic 
response).44,45 It is not known if repeated stimuli or 
trauma induce disease formation via the activation of  
Trm cell populations; further study in large patient 
cohorts is needed, but this remains an intriguing area of 
study for durable treatment responses and potential cures 
for psoriasis.

Recent Discoveries in Psoriatic Disease
Remarkable treatment outcomes for psoriasis have been 
achieved with multiple selective IL-17 and IL-23 inhibi-
tors (eTable). As demonstrated in several pivotal phase 3 
clinical trials for members of these classes of medications, 
the majority of treated psoriasis patients achieved PASI90 
clearance.46 Due to their more favorable dosing sched-
ule (ie, fewer injections) and ability to induce a durable 
remissionlike treatment response, IL-23 inhibitors have 
become the preferred treatment class for cutaneous 
disease, while IL-17 inhibitors may be preferred when 
treating patients with both plaque psoriasis and PsA.47,48 
Nevertheless, the complexity of this disease is punctu-
ated by treated patients who do not adequately respond 
to selective IL-23/IL-17 blockade.49 Recent and emerging 
treatments may shed light on these recalcitrant cases and 
will add to the rapidly growing arsenal of available pso-
riasis therapies. 

The Role of IL-17F in Psoriasis and Other  
Inflammatory Skin Diseases
Dysregulation of IL-17A and IL-17F is associated with 
several chronic inflammatory conditions, such as psoria-
sis and PsA.35,50 Both cytokines, either as homodimers or 
heterodimers, can selectively bind to the heterodimeric 
IL-17R formed by the IL-17RA and IL-17RC subunits.35 
IL-17F and IL-17C also can synergize with TNF and other 
cytokines to promote and support the self-sustaining 
inflammatory circuits in mature psoriatic plaques, though 
their inflammatory effects in the skin are more limited 
than IL-17A.51,52 Therefore, incomplete blockade of IL-17 
signaling (ie, unopposed IL-17F and IL-17C) represents 
a potential mechanism to explain the persistence of 
psoriasis in patients treated with selective IL-17A inhibi-
tors. This hypothesis is supported by reports of psoriasis 
patients who have inadequate clinical responses to selec-
tive IL-17A inhibition but subsequently improve with 
IL-17R blockade, which results in disruption of IL-17A 
as well as IL-17C/E/F cytokine signaling. This formed the 
basis for further study into the specific role of IL-17F in 
psoriatic disease and any potential therapeutic benefits 
associated with its inhibition.

Recently approved in the European Union, Canada, 
Australia, Japan, the United Kingdom, and the United 
States for moderate to severe psoriasis, bimekizumab is 
a novel humanized IgG antibody that selectively inhib-
its both IL-17A and IL-17F cytokines.53 Specifically, 

bimekizumab simultaneously prevents binding of 
IL-17A/A, IL-17A/F, and IL-17F/F dimers with the 
IL-17R. Compared to other IL-17 and IL-23 biologic 
therapies, bimekizumab (320 mg) achieved relatively 
higher response rates for PASI75, PASI90, and PASI100.49 
Neutralization of IL-17A and IL-17F by bimekizumab 
also resulted in more complete suppression of cytokine 
responses and PMN chemotaxis than either cytokine 
alone in treated PsA patients,54 which is notable because 
of the incremental benefits of recent IL-23 and IL-17 
inhibitors on inflammatory arthritis symptoms in contrast 
to the substantial improvements observed for cutaneous 
disease with those same agents. 

The primary disadvantage of bimekizumab and its 
more complete blockade of the IL-17 signaling pathway 
is that treated patients have a substantially increased 
risk for oral candidiasis (>10%).55 However, the precise 
link between candidiasis and IL-17 blockade is not yet 
fully understood because other targeted agents that 
also broadly suppress IL-17 signaling (ie, IL-17R, IL-23 
inhibitors) are associated with much lower rates of can-
didiasis.56-58 Bimekizumab also is being investigated as a 
novel therapy for hidradenitis suppurativa and will pro-
vide important reference information regarding the role 
for bispecific biologic agents in the treatment of chronic 
inflammatory skin diseases.59

IL-36 Signaling and Generalized  
Pustular Psoriasis
Recent genetic and clinical studies have expanded our 
understanding of the role of IL-36 signaling in the 
immunopathogenesis of pustular psoriasis variants. 
Generalized pustular psoriasis (GPP) is a rare distinct 
psoriasis subtype characterized by the recurrent develop-
ment of widespread erythema, superficial sterile pustules, 
and desquamation. Systemic symptoms such as fever, 
malaise, itching, and skin pain accompany acute GPP 
flares.60 Generalized pustular psoriasis is more common 
in female patients (in contrast with plaque psoriasis), and 
acute flares may be caused by multiple stimuli including 
infections, hypocalcemia, initiation or discontinuation 
of medications (eg, oral corticosteroids), pregnancy, or 
stress.61,62 Flares of GPP often require emergency or in-
patient care, as untreated symptoms increase the risk for 
severe health complications such as secondary infections, 
sepsis, or multisystem organ failure.63 The prevalence of 
GPP is estimated to be approximately 1 in 10,000 individ-
uals in the United States,64-67 with mortality rates ranging 
from 0 to 3.3 deaths per 100 patient-years.67

In contrast to plaque psoriasis, aberrant IL-36 signal-
ing is the predominant driver of GPP. IL-36 is a member 
of the IL-1 cytokine family that includes three IL-36 
agonists (IL-36α, IL-36β, IL-36γ) and 1 endogenous 
antagonist (IL-36Ra, encoded by IL36RN).68 The immuno-
pathogenesis of GPP involves dysregulation of the IL-36– 
chemokine–PMN axis, resulting in unopposed IL-36 sig-
naling and the subsequent recruitment and influx of 
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PMNs into the epidermis. IL36RN mutations are strongly 
associated with GPP and result in impaired function of the 
IL-36Ra protein, leading to unopposed IL-36 signaling.69 
However, approximately two-thirds of GPP patients lack 
identifiable gene mutations, suggesting other immune 
mechanisms or triggers causing upregulated IL-36 sig-
naling.70 In response to these triggers, increased IL-36 
cytokines released by keratinocytes bind to the IL-36R, 
resulting in substantial keratinocyte hyperproliferation, 
increased IL-36 levels, and the expression of hundreds 
of additional inflammatory signals (eg, IL-17C, antimi-
crobial peptides, TNF, IL-6).71 Increased IL-36 levels also 
drive the production of PMN chemotactic proteins (eg, 
CXCL1/2/3/5/6/8 and CXCR1/2) and act synergistically with 
IL-17 cytokines to create an autoamplifying circuit that is 
analogous to the feed-forward inflammatory loop in plaque 
psoriasis.72 Biopsies of involved GPP skin reveal increased 
expression of IL-36 in the uppermost layers of the epider-
mis, which creates a gene expression gradient that acts as 
a strong attractant for PMNs and forms the basis for the 
hallmark pustular lesions observed in GPP patients.

Until recently, treatment strategies for GPP involved 
the off-label use of topical, oral, or biologic therapies 
approved for plaque psoriasis, which often was associ-
ated with variable or incomplete disease control. In 
September 2022, the US Food and Drug Administration 
(FDA) approved intravenous spesolimab as a first-in-
class humanized monoclonal IgG1 antibody for the  
treatment of GPP flares in adults. Spesolimab binds to 
IL-36R and prevents its activation by its endogenous 
agonists. A phase 2, randomized, 12-week clinical trial 
(Effisayil-1) evaluated the efficacy and safety of a single 
900-mg intravenous dose of spesolimab followed by an 
optional second dose 1 week later for inadequate treat-
ment responses in 53 enrolled GPP patients (2:1 treat-
ment to placebo randomization).73 Remarkably, more 
than half (19/35 [54%]) of GPP patients experienced 
complete resolution of pustules (GPP physician global 
assessment subscore of 0 [range, 0–4]) and showed 
sustained efficacy out to week 12 after just 1 or 2 doses 
of spesolimab. Overall, the safety profile of spesolimab 
was good; asthenia, fatigue, nausea, vomiting, headache, 
pruritus, infusion-related reaction and symptoms, and 
mild infections (eg, urinary tract infection) were the most 
common adverse events reported.73 

Imsidolimab, a high-affinity humanized IgG4 mono-
clonal antibody that binds and blocks activation of 
IL-36R, also has completed phase 2 testing,74 with 
phase 3 study results expected in early 2024. The rapid 
onset of action and overall safety of imsidolimab was in 
line with and similar to spesolimab. Future approval of 
imsidolimab would add to the limited treatment options 
available for GPP and has the additional convenience of 
being administered to patients subcutaneously. Overall, 
the development of selective IL-36R inhibitors offers a 
much-needed therapeutic option for GPP and illustrates 
the importance of translational research.

Role of Tyrosine Kinase in Psoriatic Disease
The Janus kinase (JAK) enzyme family consists of  
4 enzymes—tyrosine kinase 2 (TYK2), JAK1, JAK2, and 
JAK3—that function as intracellular transduction signals 
that mediate the biologic response of most extracellular 
cytokines and growth factors.75 Critical psoriasis-related 
cytokines are dependent on intact JAK-STAT signal-
ing, including IL-23, IL-12, and type I IFNs. In 2010, a 
genome-wide association identified TYK2 as a psoriasis 
susceptibility locus,76 and loss-of-function TYK2 muta-
tions confer a reduced risk for psoriasis.77 Unlike other 
JAK isoforms, TYK2 mediates biologic functions that 
are highly restricted to the immune responses associ-
ated with IL-23, IL-12, and type I IFN signaling.78,79  
For these reasons, blockade of TYK2 signaling is an 
attractive therapeutic target for the potential treatment of 
psoriatic disease. 

In September 2022, the FDA approved deucravaci-
tinib as a first-in-class, oral, selective TYK2 inhibitor for 
the treatment of adult patients with moderate to severe 
plaque psoriasis. It was the first FDA approval of an oral 
small-molecule treatment for plaque psoriasis in nearly a 
decade. Deucravacitinib inhibits TYK2 signaling via selec-
tive binding of its unique regulatory domain, resulting in 
a conformational (allosteric) change that interferes with 
its active domain.80 This novel mechanism of action limits 
the unwanted blockade of other broad biologic processes 
mediated by JAK1/2/3. Of note, the FDA did not issue 
any boxed warnings for deucravacitinib as it did for other 
FDA-approved JAK inhibitors.

In a head-to-head, 52-week, double-blind, pro-
spective, randomized, phase 3 study, deucravacitinib 
showed clear superiority over apremilast for PASI75 at  
week 16 (53.0% [271/511] vs 39.8% [101/254]) and 
week 24 (58.7% [296/504] vs 37.8% [96/254]).81 Clinical 
responses were sustained through week 52 and showed 
efficacy for difficult-to-treat areas such as the scalp, acral 
sites, and nails. Other advantages of deucravacitinib 
include once-daily dosing with no need for dose titra-
tion or adjustments for renal insufficiency as well as the 
absence of statistically significant differences in gastroin-
testinal tract symptoms compared to placebo. The most 
common adverse effects included nasopharyngitis, upper 
respiratory tract infections, headache, diarrhea, and her-
pes infections.81 The potential benefit of deucravacitinib 
for PsA and psoriasis comorbidities remains to be seen, 
but it is promising due to its simultaneous disruption 
of multiple psoriasis-related cytokine networks. Several 
other TYK2 inhibitors are being developed for psoriatic 
disease and related inflammatory conditions, underscor-
ing the promise of targeting this intracellular pathway.

Aryl Hydrocarbon Receptor Agonism
Topical steroids are the mainstay treatment option for 
localized or limited plaque psoriasis due to their potent 
immunosuppressive effect on the skin and relatively low 
cost. Combined with vitamin D analogs, topical steroids 
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result in marked improvements in disease severity and 
improved tolerability.82 However, chronic use of topical 
steroids is limited by the need for twice-daily application, 
resulting in poor treatment compliance; loss of efficacy 
over time; risk for steroid-induced skin atrophy on spe-
cial body sites; and patient concerns of potential systemic 
effects. The discovery of novel drug targets amenable to 
topical inhibition is needed.

Dysregulated aryl hydrocarbon receptor (AHR) lev-
els have been reported in atopic dermatitis and pso-
riasis.83 Aryl hydrocarbon receptors are ubiquitously 
expressed in many cell types and play an integral role in 
immune homeostasis within the skin, skin barrier func-
tion, protection against oxidative stressors, and regula-
tion of proliferating melanocytes and keratinocytes.84,85  
They are widely expressed in multiple immune cell  
types (eg, antigen-presenting cells, T lymphocytes, fibro-
blasts) and modulate the differentiation of T17 and 
T22 cells as well as their balance with regulatory T-cell 
populations.86 In keratinocytes, AHR helps to regulate 
terminal differentiation, enhance skin barrier integrity 
via AHR-dependent filaggrin (FLG) expression, and pre-
vent transepidermal water loss.87,88 The mechanisms by  
which AHR ligands lead to the upregulation or down-
regulation of specific genes is intricate and highly con-
text dependent, such as the specific ligand and cell 
type involved. In preclinical studies, AHR-deficient mice 
develop psoriasiform skin inflammation, increased IL-17 
and IL-22 expression, and abnormal skin barrier func-
tion.89 Keratinocytes treated with AHR ligands in vitro 
modulated psoriasis-associated inflammatory cytokines, 
such as IL-6, IL-8, and type I and II IFNs.89,90 The use of 
coal tar, one of the earliest historical treatments for pso-
riasis, is thought to activate AHRs in the skin via organic 
compound mixtures containing polyaromatic hydrocar-
bons that help normalize the proinflammatory environ-
ment in psoriatic skin.91 

In June 2022, the FDA approved tapinarof as a first-
in-class, topical, nonsteroidal AHR agonist for the treat-
ment of plaque psoriasis in adults. Although the exact 
mechanism of action for tapinarof has not been fully 
elucidated, early studies suggest that its primary func-
tion is the activation of AHR, leading to reduced T-cell 
expansion and T17 cell differentiation. In the imiquimod 
mouse model, cytokine expression of IL-17A, IL-17F, 
IL-19, IL-22, IL-23A, and IL-lβ in psoriasiform skin 
lesions were downregulated following tapinarof treat-
ment.92 In humans, tapinarof treatment is associated 
with a remittive effect, in which the average time for 
tapinarof-treated psoriasis lesions to remain clear was 
approximately 4 months.93 Preliminary research investi-
gating the mechanism by which tapinarof induces this 
remittive effect is ongoing and may involve the reduced 
activation and influx of T17 and Trm populations into the 
skin.94 However, these preclinical studies were performed 
on healthy dermatome-derived skin tissue cultured in  
T17-skewing conditions and needs to be replicated in 

larger samples sizes using human-derived psoriatic tis-
sue. Alternatively, a strong inhibitory effect on IL-23 
cytokine signaling may, in part, explain the remittive 
effect of tapinarof, as an analogous response is observed 
in patients who start and discontinue treatment with 
selective IL-23 antagonists. Regardless, the once-daily 
dosing of tapinarof and sustained treatment response is 
appealing to psoriasis patients. Tapinarof generally is well 
tolerated with mild folliculitis (>20% of patients) and 
contact dermatitis (5% of patients) reported as the most 
common skin-related adverse events. 

New Roles for Phosphodiesterase 4 Inhibition
Phosphodiesterases (PDEs) are enzymes that hydrolyze 
cyclic nucleotides (eg, cyclic adenosine monophosphate) 
to regulate intracellular secondary messengers involved 
in the inflammatory response. One of several enzymes 
in the PDE family, PDE4, has been shown to have 
greater activity in psoriatic skin compared to healthy 
skin.95 Phosphodiesterase inhibitors decrease the degra-
dation of cyclic adenosine monophosphate, which trig-
gers protein kinase A to downregulate proinflammatory  
(eg, TNF-α, IL-6, IL-17, IL-12, IL-23) cytokines and 
increased expression of anti-inflammatory signals such 
as IL-10.96,97 Apremilast, the first oral PDE4 inhibitor 
approved by the FDA for psoriasis, offered a safe alterna-
tive to traditional oral immunosuppressive agents that 
had extensive risks and potential end-organ adverse 
effects. Unfortunately, apremilast demonstrated modest 
efficacy for psoriatic disease (better efficacy in the skin 
vs joint manifestations) and was supplanted easily by 
next-generation targeted biologic agents that were more 
efficacious and lacked the troublesome gastrointestinal 
tract adverse effects of PDE4 inhibition.98

Crisaborole became the first topical PDE4 inhibi-
tor approved in the United States in December 2016 
for twice-daily treatment of atopic dermatitis. Although 
phase 2 trial results were reported in psoriasis, this indi-
cation was never pursued, presumably due to similar 
improvements in primary outcome measures at week 
12, compared to placebo (ClinicalTrials.gov Identifier 
NCT01300052). 

In July 2022, the first topical PDE4 inhibitor indi-
cated for plaque psoriasis was approved by the FDA—
roflumilast cream 0.3% for once-daily use in individuals 
12 years and older. Roflumilast was found to be clini-
cally efficacious as early as 2 weeks after its use in an 
early-phase clinical trial.99 In 2 phase 3 clinical trials 
(DERMIS-1 and DERMIS-2), roflumilast significantly 
increased the proportion of patients achieving PASI75 at 
week 8 compared to vehicle (39%–41.6% vs 5.3%–7.6%, 
respectively)(P<.001).100 Overall, this nonsteroidal topical 
therapy was found to be well tolerated, with infrequent 
reports of application site pain or irritation as adverse 
events. Similar to tapinarof, patients can apply roflumilast 
on all body surface areas including the face, external geni-
talia, and other intertriginous areas.100 Importantly, the 
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broad immune impact of PDE4 inhibition suggests that 
topical roflumilast likely will be an effective treatment 
for several additional inflammatory conditions, including 
seborrheic dermatitis and atopic dermatitis, which would 
expand the clinical utility of this specific medication.

Conclusion
In the last 2 decades, we have witnessed a transla-
tional revolution in our understanding of the underlying  
genetics and immunology of psoriatic disease. Psoriasis 
is widely considered one of the best-managed inflamma-
tory conditions in all of medicine due to the development 
and availability of highly targeted, effective topical and  
systemic therapies that predominantly disrupt IL-23/
IL-17 cytokine signaling in affected tissues. However, 
future clinical studies and laboratory research are  
necessary to elucidate the precise cause of psoriasis as 
well as the underlying genetic and immune signaling 
pathways driving less common clinical variants and recal-
citrant disease.
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Novel Biologic and Topical Therapies for the Treatment of PsO and PsA

Drug class Drug name
Biologic 
target

Psoriasis 
indication(s)

Administration (maintenance 
dose)

Approved patient 
population

TNF inhibitor Certolizumab 
pegol

TNF PsO, PsA SubQ (200 mg once  
every 2 wk)

Adults

Adalimumab TNF PsO, PsA SubQ (40 mg once every 2 wk) Adults

Etanercept TNF PsO, PsA SubQ (50 mg once weekly) Adults

Infliximab TNF PsO, PsA IV infusion (5–10 mg/kg  
once every 8 wk)

Adults, children ≥4 y  
(PsO only)

IL-17 inhibitor Secukinumab IL-17A PsO, PsA SubQ (300 mg once  
every 4 wk)

Adults, children ≥6 y (PsO 
only) and ≥2 y (PsA only)

Ixekizumab IL-17A PsO, PsA SubQ (80 mg once  
every 4 wk)

Adults, children ≥6 y  
(PsO only)

Brodalumab IL-17R PsO SubQ (210 mg once  
every 2 wk)

Adults

Bimekizumab IL-17A/F PsO SubQ (320 mg once  
every 4–8 wk)

Adults

IL-23 inhibitor Ustekinumab IL-12/23p40 PsO, PsA Adults: subQ (45 or 90 mg once 
every 12 wk); children ≥6 y: subQ 
(<60 kg: 0.75 mg/kg; 60–100 kg: 
45 mg; >100 kg: 90 mg)

Adults, children ≥6 y

Tildrakizumab IL-23p19 PsO SubQ (100 mg once  
every 12 wk)

Adults

Guselkumab IL-23p19 PsO, PsA SubQ (100 mg once  
every 8 wk)

Adults

Risankizumab IL-23p19 PsO, PsA SubQ (150 mg once  
every 12 wk)

Adults

AHR agonist Tapinarof AHR PsO Topical (once daily) Adults

PDE4 inhibitor Roflumilast PDE4 PsO Topical (once daily) Adults, children ≥12 y

Apremilast PDE4 PsO, PsA Oral (30 mg twice daily) Adults

JAK inhibitor Deucravacitinib TYK2 PsO Oral (6 mg once daily) Adults

IL-36 inhibitor Spesolimab IL-36R GPP IV (one 900-mg injection,  
repeat in 7 d if needed)

Adults

Abbreviations: AHR, aryl hydrocarbon receptor; GPP, generalized pustular psoriasis; IL-17R, IL-17 receptor; IL-36R, IL-36 receptor; IV, 
intravenous; JAK, Janus kinase; PDE4, phosphodiesterase 4; PsA, psoriatic arthritis; PsO, plaque psoriasis; subQ, subcutaneous; TNF, tumor 
necrosis factor; TYK2, tyrosine kinase.
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