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Abstract
Orthopedic tissues respond to mechanical loads 
to maintain normal homeostasis and in response 
to injury. As this body of work continues to 
grow, it is important to synthesize the recent 
studies across tissues and specialties with one 
another and with past studies. Hence, this review 
highlights the knowledge gained 
since 2000, with only few excep-
tions, concerning the effects of 
mechanical load and biologics on 
remodeling and repair of orthope-
dic tissue.

This review is separated into 4 
sections: tendon and ligament, 
meniscus, cartilage, and bone. 
Each section begins with a brief 

anatomical description, followed by dis-
cussions of remodeling and repair, and 
concluding with a concise presentation 
of information regarding repair enhance-
ment through biologics. In addition to 
summarizing recent work, this review 
provides insights for future directions 

and, through the combined discussion of mechanics and 
biologics, opportunities for translation to clinical use. This 
is Part II of a 2-part series, and will discuss cartilage and 
bone. Part I (tendon and ligament and meniscus) appeared 
in the November 2010 issue. 

                             Cartilage
Anatomy

Cartilage is primarily composed of cells, 
collagen, proteoglycans, and water. 
The orientation of collagen fibrils var-
ies throughout the tissue, making car-
tilage inhomogeneous and anisotropic. 
Superficial fibrils are oriented parallel 
to the tissue surface, while deep fibrils 
are oriented in a more perpendicular 
direction. These deep vertical fibrils 
are anchored firmly into the subchon-
dral bone and play an important role in 
supporting and protecting the tissue.1 
However, the integrity of the superficial 
fibrils is critical for tissue maintenance 
and is more vulnerable to damaging 
compressive loads.2

Despite the tissue complexity, car-
tilage mechanics have been relatively 

well characterized through experimental and theoreti-
cal models. The dynamic stiffness of cartilage is pri-
marily due to flow-dependent viscoelasticity.3 Fixed 
negatively charged proteoglycans attract water from the 
synovial fluid creating an osmotic pressure that stresses 
and stiffens the collagen network. Tissue permeability 
depends on collagen pore size and proteoglycan fixed 
charge density and is both depth- and strain-dependent.4 
Fibril-reinforced poroviscoelastic swelling models have 
shown faster fluid flow with stiffer collagen networks 
and higher permeability in the superficial zone com-
pared to the deep zone.5 Recently, depth-dependent cel-
lular deformations have been described by a model with 
arcade-like collagen orientation and depth-dependent 
fixed charge density.6

The pericellular matrix (PCM) is the portion of the 
more general extracellular matrix (ECM) immediately 
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surrounding the chondrocytes and may play an impor-
tant protective role in regulating the local stress-strain 
and fluid-flow microenvironments of the chondro-
cytes.7,8 The modulus of the PCM is between that of the 
ECM and chondrocytes, thereby allowing a more grad-
ual mechanical transition. Furthermore, the modulus of 
the PCM is not depth-dependent,9,10 while the modulus 
of the ECM increases from the superficial to the deep 
layer.11 This mismatch of moduli amplifies chondrocyte 
compressive strains and results in their depth-dependent 
stress shielding.12

Remodeling
Proper dynamic loading and fluid exchange with the syno-
vial fluid are important in maintaining cartilage homeo-
stasis. Unloading, overloading, and static loading are each 
injurious to cartilage, which can affect matrix synthesis 
and cell viability. Immobilization decreases proteoglycan 
synthesis and thins and softens cartilage.13 Severe impact 
or overloading can induce cartilage degeneration,14 while 
static loading inhibits matrix synthesis.15 Moreover, injuri-
ous loading increases chondrocyte apoptosis,16,17 which is 
closely related to osteoarthritis. Still, a report finding no 
correlation between apoptosis and different loading levels 
in human cartilage18 indicates the need for further studies 
in this area.

Several in vitro studies have been conducted to find 
appropriate physiologic loading parameters. Loads in 
the range of 15 to 20 MPa have been shown to cause 
cell death, reduced proteoglycan synthesis, and matrix 

damage along with cell swelling.19 In a bovine model, 
more than 50% of chondrocytes underwent apoptosis 
due to peak stresses above 20 MPa.16 In human carti-
lage, however, increased peak stress did not appear to 
be related to glycosaminoglycan loss.20 With regard to 
loading rates, high strain rates are related to chondro-
cyte death and matrix damage, especially in the super-
ficial zone,17,21 while low strain rates are related to cell 
death nearly throughout the tissue depth.22

Repair
It is unclear whether chondrocytes have the biosynthetic 
capability to potentially repair the matrix after injury, but it 
is evident that the repair response in cartilage is extremely 
poor. Cartilage is avascular, and therefore there is no inflam-
matory repair process similar to that typically seen in other 
tissues. Damage to the ECM disrupts transduction of physi-
cal signals, and chondrocytes do not significantly respond to 
injury. Cartilage laceration causes cell death in the vicinity 
of wound edge, while any surviving chondrocytes function 
normally and are unchanged. Therefore, excision, débride-
ment, shaving, and laser abrasion procedures are biologi-
cally purely detrimental.17,23,24 Nevertheless, less cell death 
is possible with sharper, more precise instruments.25

Biologic Enhancement
Several repair techniques (eg, chondroplasty, drilling, micro-
fracture) involve subchondral bone exposure to provide a 
blood supply from the underlying marrow. This recruits 
mesenchymal stem cells and multiple growth factors to 
the injury site. However, the biomechanical properties and 
long-term durability of fibrocartilagenous repair tissue are 
inferior to those of hyaline cartilage.26 Current experimental 
techniques for biologic enhancement include transplanta-
tion or implantation of cells and tissues with chondrogenic 
potential. Autologous osteochondral transplantation (mosa-
icplasty) is indicated for small- to medium-sized defects with 
good to excellent clinical results and survival of transplanted 
tissue after long-term follow-up.27 In contrast, autologous 
chondrocyte implantation (ACI) is a more nascent approach 
with contradictory findings. Authors of one study observed 
inferior fibrocartilagenous healing with ACI versus hyaline 
cartilaginous healing in mosaicplasty,28 while authors of 
another report improved results.29 Further improvements 
in cartilage repair are also possible through administration 
of various growth factors, pulsed electromagnetic fields, 
hyaluronic acid, and necrosis (necrostatin 1) or apoptosis 
(Z-VAD-FMK) inhibitors. While these techniques are not 
yet ready for widespread use, they represent promising trans-
lational treatments for the near future.

Bone
Anatomy

Bone is composed of a calcified collagenous matrix with 
dense cortical bone and more vacuous trabecular bone. 
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Figure 1. Representation of osteocyte adaptation in response 
to loading. The center image represents an osteocyte that, 
through its cytoskeletal organization and extracellular connec-
tions to bone, has achieved its “optimal strain environment.” 
An increase in load will induce cellular remodeling of actin fil-
aments and integrins as well as release of collagen and bone 
morphogenetic protein to increase bone mass and reduce 
strains. Decreases in load will also induce cellular remodel-
ing but ultimately will lead to degradation of its attachments 
to the matrix via matrix metalloproteinases (small circles) and 
release of macrophage colony stimulating factor and osteo-
clast differentiation factor to stimulate osteoclast-mediated 
bone resorption.34 Reprinted with permission from Dr. Clinton 
Rubin.



Cortical bone is a highly organized material consisting of 
osteons, which are microscopic canals surrounded by con-
centric rings of dense lamellar bone. Trabecular bone is a 
network of interconnecting solid plates and rods surrounded 
by bone marrow. Both forms of bone are highly responsive 
to mechanical loading and align along the local directions 
of principal stresses. Osteocytes reside in lacunae within 
the calcified matrix and are interconnected via gap junc-
tions throughout the lacunar-canalicular system (LCS) with 
other osteocytes, bone lining cells, and osteoblasts, thereby 
regulating their activity.30 This regulation may occur at the 
whole-bone level or locally, since one osteoblast is rarely 
connected with several osteocytes at the same time.31

Osteocytes are the main effector of tissue response 
to loading due to their abundance in bone and sensi-
tivity to fluid flow within the LCS, which also serves 
as a nutritional transport mechanism.32 Interestingly, 
osteocytes experience a 1000-fold higher hydraulic 
pressure than osteoblasts do.33 Further, osteocytes 
can change their mechanosensitivity to accommodate 
to the strain environment through cytoskeletal reor-
ganization34 and can move their bodies and dendritic 
processes to modify their local environment35 (Figure 
1). Additionally, cilia may play a role in osteocyte 
mechanosensation.36

Remodeling
The initial stimulus for functional remodeling is not fully 
clear, but osteocyte apoptosis is one candidate. Physiologic 
strains inhibit osteocyte apoptosis,37 whereas elevated strain 
levels induce osteocyte apoptosis triggering osteoclastic 
bone removal.38 Alternatively, bone remodeling may be 
initiated by microdamage,39 which could also be related to 
osteocyte apoptosis through direct cellular trauma or due 
to a ruptured LCS. Even without microdamage, osteocyte 
syncytium can be disrupted by high cyclic strains, thereby 
influencing remodeling.40 These load-induced adaptive 
changes are necessary to prevent the accumulation and 
coalescence of microcracks, which may lead to fatigue 
fracture.

Since Wolff described skeletal adaptation to load 
bearing,41 scientists have been trying to identify specif-
ic loading parameters that govern this process. Notably, 
dynamic, as opposed to static, loading promotes bone 
remodeling. Specifically, low-magnitude and high-
frequency vibration stimulates anabolism in bone.42,43 
However, increasing frequency does not have a simple 
dose–response relationship with remodeling. For exam-
ple, load-induced cortical bone adaptation in a mouse 
model increases with increasing loading frequency up 

to 5 to 10 Hz and then plateaus.44 Furthermore, loading 
applied in discrete bouts separated by recovery periods 
is more effective than continuous cyclic load. Inserting 
a period of hours45 or even seconds46 of rest between 
loading periods improved bone mechanics. These data 
suggest that bone cells need recovery periods and rest 
for resensitization, though the exact mechanism and 
optimal recovery times are unknown.

Like supraphysiologic strains, unloading or disuse 
also induces osteocyte apoptosis and recruits osteoclasts. 
However, in contrast to elevated loading, this leads to 
bone loss rather than deposition.47 A possible reason for 
this discrepancy is a difference in fluid flow. Fluid stasis 
occurs at the front of the cutting cone, where osteoclasts 
are active, and strong fluid flow exists along the wall 
of the resting zone and closing cone, where osteoblasts 
are active, thus supporting the concept that fluid flow is 
essential to osteocyte-mediated remodeling.48
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“...data suggest that bone cells 
need recovery periods and rest 
for resensitization, though the 
exact mechanism and optimal 
recovery times are unknown.  ”

Figure 2. Schematic diagram of the biophysical stimuli acting on the cells in the fracture callus. Low mechanical stimuli (eg, 
shear strain, fluid flow) favor osteoblast differentiation and bone formation.49 Reprinted with permission from Elsevier.
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Repair
Mechanical loading, as well as fracture fixation and 
interfragmentary motion, can affect bone healing. 
Mechanoregulation models have demonstrated that high 
levels of shear strain and fluid flow deform precursor 
cells, thereby stimulating formation of fibrous connec-
tive tissue. Lower levels of shear strain lead to cartilage 
formation, and even lower levels result in ossification,49 
as summarized in Figure 2. Hence, stable fixation of a 
fracture can lower shear strains and fluid flow, thereby 
preventing fibrous connective tissue production in the cal-
lus, which otherwise could lead to a nonunion. In fracture 
treatment, absolute rigid fixation is impossible, and most 
healing results from indirect, endochondral bone forma-
tion and interfragmentary motion. However, the optimal 
amount of motion is unknown and is contradictory in 
some studies.50,51 In particular, the ideal amount of micro-
motion may differ with anatomical site, fracture pattern, 
and gap. Nevertheless, since some motion is believed to 
be beneficial, the trend in fracture treatment is toward 
semirigid fixation.

Bone healing is also highly dependent on the direc-
tion of load. Shear forces on bone healing may create 
abundant cartilaginous callus, produce pseudarthrosis,52 
delay,53 or result in poor healing.54 Conversely, torsion-
al shear may stimulate intercortical mineralized callus 
formation.55 Compressive loading, but not tensile load, 
is generally thought to be beneficial for bone healing.56 
Interestingly, tensile strains may promote endochondral 
ossification, whereas compressive strains may suppress 
chondrogenesis and promote direct intramembranous 
bone healing.57

While several clinical studies have demonstrated the 
anabolic effects of cyclic loading on bone remodeling,43 
as mentioned in the previous section, similar investi-
gations on bone healing have been limited to animal 
models. One study has shown a negative effect on bone 
healing,58 though multiple studies report acceleration 
and augmentation of endochondral healing.59,60 Despite 
the inability to relate postinjury time points between 
animals and humans directly, authors of most animal 
studies agree that the early stage of fracture healing is 
most sensitive to loading.61 In the early inflammatory 
phase, a short delay before loading improved bone heal-
ing,62 possibly due to increased angiogenesis within the 
callus.51,63 Additionally, inserting a pause during load-
ing can enhance bone healing.64

Biologic Enhancement
Numerous cytokines, growth factors, and hormones are 
involved in fracture healing, but their roles generally are 
not well elucidated. As a result, this review focuses only on 
factors approved for clinical use—namely, bone morpho-
genetic proteins 2 and 7 (BMP-2, BMP-7) and parathyroid 
hormone (PTH).

Since Urist’s landmark discovery of auto-osteo-
inductive materials related to bone regeneration and 
repair,65 17 BMPs have been identified. As members 
of the TGF-β superfamily, BMPs activate intracellular 
signaling cascades via serine/threonine protein kinase-
coupled receptors, and most BMPs (except BMP-1, 
BMP-3, and BMP-12) play a role in activating alkaline 
phosphatase in osteoblastic cells. Of the various BMPs, 
only BMP-2 and BMP-7 are used clinically in fracture 
treatment and spinal fusion. BMP-2 reduces the rate of 
infection and accelerates healing better than conven-
tional treatment in open tibial fractures.66,67 Further, it 
exhibits good results as an alternative to autogenous 

bone grafts in the treatment of tibial fractures with 
large defects.68 BMP-7 (osteogenic protein 1) is safe 
and effective in the treatment of nonunions of long 
bones69,70 and in the treatment of proximal pole scaph-
oid nonunions.71

In the spine, BMP-7 leads to improved fusion rates 
and clinical outcomes without complications in the 
treatment of degenerative spondylolisthesis,72 as well 
as in revision surgery for patients at high risk for 
nonunion.73 BMP-2 also provides good clinical and 
radiologic outcomes in posterolateral lumbar fusion 
compared with autograft74 and improves patient sat-
isfaction by eliminating the need for harvesting an 
iliac crest bone graft.75 In addition, anterior lumbar 
interbody fusion with BMP-2 had better outcomes com-
pared with autograft.76 While BMP-2 treatment has not 
been shown to be more effective or safer than standard 
treatment for pyogenic vertebral osteomyelitis—such 
as débridement, use of intravenous antibiotics, and 
circumferential fusion—use of BMP-2 has shown good 
clinical results without adverse effects.77

BMP use also has been associated with a few com-
plications, including heterotopic ossification and neck 
swelling after anterior cervical spine fusion. Heterotopic 
ossification was reported in an intramuscular lesion of 
the triceps after treatment of a humerus nonunion with 
BMP-778 and in 4 cases of humerus open fractures or 
nonunion treatments with BMP-2 or BMP-7.79 In the 
lumbar spine, heterotopic ossification was observed 
with BMP-2 treatment in the iliopsoas and surrounding 
the spinal cord after posterior fusion.80 Despite similar 
clinical outcomes between autograft and BMP-2 com-

“ BMP-2 reduces the rate of infec-
tion and accelerates healing bet-
ter than conventional treatment 

in open tibial fractures.”
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bined with allograft in anterior cervical discectomy and 
fusion, BMP-2-treated groups exhibited increased neck 
swelling (compared to controls) that may cause dys-
phagia, dyspnea, and dysphonia.81 However, in a mouse 
study, α-2-HS glycoprotein, an antagonist of cytokine 
binding to TGF-β receptors, was found to regulate osteo-
inductive effects of BMP82 and therefore may be useful 
to control heterotopic ossification.

Intermittent systemic administration of PTH (1-34) 
is clinically approved to increase bone mineral den-
sity and reduce fracture risk in patients with osteo-
porosis.83 Biologically, PTH increases the number 
of osteoblasts in nonfractured bone.84 Additionally, 
authors of several animal studies have reported that 
intermittent PTH (1-34) dosing has an anabolic effect 
on fractured bone as well. For example, PTH (1-34) 
enhanced fracture healing in a rat model through 
stimulation of early proliferation and differentia-
tion of osteoprogenitor cells.85 Other data show that 
endochondral ossification is stimulated through chon-
drogenesis by PTH (1-34).86,87 Noninvasive systemic 
drug delivery of PTH for fracture healing is very 
attractive but requires a randomized, controlled clini-
cal study to truly demonstrate effectiveness.

Conclusion
While orthopedic tissues in general exhibit a signifi-
cant response to mechanical loading, the nature and 
magnitude of this response vary greatly, both between 
and within, tissue types. Bone is extremely sensitive 
to loading and consequently inspired the connection 
between form and function embodied by Wolff’s law. 
However, it is becoming increasingly evident that many 
other tissues with far slower metabolic activity poten-
tials are subject to the same principles. In essence, 
nearly all orthopedic tissues benefit from moderate 
levels of loading, whereas insufficient or excessive 
loading is detrimental. The optimal amount of load 
has been elusive to determine and, not surprisingly, 
depends greatly on tissue structure, resident cell types, 
vasculature, anatomical location, repair status, et cetera. 
Furthermore, while this area of research has become 
ever more cross-disciplinary, the combined effects of 
mechanical loading and biologics have been largely 
unexplored. Many studies have analyzed the contribu-
tions of specific mechanical loading parameters to 
remodeling and repair, while others have focused on 
repair augmentation through biologics. Although this 
is necessary to limit experimental size and complexity, 
synergistic behavior between mechanics and biology is 
not unexpected and should be investigated.
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