Supplemental Material for: Resuming anticoagulation following upper gastrointestinal bleeding — a microsimulation analysis

Matthew A Pappas, MD, MPH; Natalie Evans, MD; Maged K Rizk, MD, MBA; and Michael B Rothberg, MD, MPH

1.	Literature search to identify timing of rebleeding	3
2.	Schematic diagram of microsimulation model	4
3.	In-hospital mortality	5
4.	Future disability following ischemic stroke	5
5.	Covariance of risk scores	7
6.	Meta-model: assessing sensitivity to input parameters	8
7.	Optimal day of apixaban resumption following UGIB, by CHA2DS2-Vasc and Rockall scores	10

1. Literature search to identify timing of rebleeding

We searched the Medline database for articles that matched the following phrase, and limited the results to systematic reviews:

"Time Factors"[MeSH Terms] AND "Recurrence"[MeSH Terms] AND ("Peptic Ulcer"[MAJR] OR "Duodenal Ulcer"[MAJR] OR "Gastrointestinal hemorrhage"[MAJR])

As of October 11, 2017, Medline included 775 articles that matched these search terms, 8 of which were categorized as systematic reviews. We reviewed those 8 articles for data with which one could estimate the probability of rebleeding as a function of day; only the cited article by El Ouali and colleagues included such estimates.

El Ouali and colleagues provide the following interval estimates of rebleeding:

Interval:	Rebleeding rate:
0-3 days	39.5%
3-7 days	36.6%
7-14 days	19.7%
14-29 days	6.2%

From these interval estimates, we estimated the following point estimates (interval rate/days in interval):

Point:	Rebleeding rate:
Day 2	13.2%
Day 5	9.2%
Day 11	2.8%
Day 21	0.4%

To these point estimates, we fitted the following exponential:

Conditional probability of rebleeding by day = $b_0^* \exp(b_1^* day)$ where $b_0 = 0.1843$ (standard error: 0.0136) and $b_1 = -0.1563$ (standard error: 0.0188)

This decay function is graphed below, with bootstrapped 95% confidence intervals.

2. Schematic diagram of microsimulation model

3. In-hospital mortality

Estimating in-hospital mortality required some assumptions. Worth noting are (all of the following point estimates are from GWTG-Stroke):

- We assumed that ischemic stroke patients who took an ambulance from the scene were an independent and randomly distributed 53.4% of that population.
- We assumed that ischemic stroke patients who did not present via the ED were an independent and randomly distributed 5.7% of that population.
- We assumed that ischemic stroke patients who arrived during regular business hours were an independent and randomly distributed 46.8% of that population.
- We assumed that intracerebral hemorrhage patients who took an ambulance from the scene were an independent and randomly distributed 65.9% of that population.
- We assumed that intracerebral hemorrhage patients who did not present via the ED were an independent and randomly distributed 7.6% of that population.
- We assumed that intracerebral hemorrhage patients who arrived during regular business hours were an independent and randomly distributed 40.8% of that population.
- We assumed that subarachnoid hemorrhage patients who took an ambulance from the scene were an independent and randomly distributed 53.7% of that population.
- We assumed that subarachnoid hemorrhage patients who did not present via the ED were an independent and randomly distributed 17.1% of that population.
- We assumed that subarachnoid hemorrhage patients who arrived during regular business hours were an independent and randomly distributed 33.1% of that population.
- We assumed that all patients taking anticoagulants at the time of their stroke had a coagulopathy as defined in the GWTG-Stroke risk estimation function.

Other assumptions worth pointing out include:

- All patients have a baseline modified Rankin Score of 0.
- A uniformly distributed random 10% of ischemic stroke patients receive thrombolytics, unless they have already resumed anticoagulation.
- All intracranial hemorrhages lead to similar future disability, if a patient survives to discharge.

4. Future disability following ischemic stroke

We performed an ordinal logistic regression on the NINDS-tPA trial data to predict mRS months following discharge, among atrial fibrillation patients who survived to discharge, using NIHSS, age, baseline mRS, and use of t-PA as predictors. Because we expected that the GWTG-Stroke inpatient mortality prediction would be a better-calibrated predictor of death before discharge, we conditioned this regression on survival to discharge. Those interested in reproducing this from the same dataset, using Stata:

. ologit rank3m c.baseline i.nrankin c.age i.treatcd if patrial==100 & hdchg!=5

[...]

Ordered logistic regression	Number of obs	=	93
	LR chi2(7)	=	52.26
	Prob > chi2	=	0.0000
Log likelihood = -146.93877	Pseudo R2	=	0.1510

rank3m	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
baseline	.2143078	.0357894	5.99	0.000	.1441619	.2844537
nrankin						
1	1.921345	.9009003	2.13	0.033	.1556126	3.687077
2	.2743499	1.082268	0.25	0.800	-1.846857	2.395556
3	2003374	1.550749	-0.13	0.897	-3.239749	2.839074
4	1.504423	1.517393	0.99	0.321	-1.469613	4.478459
	I					
age	.0318417	.0221059	1.44	0.150	011485	.0751684
2.treatcd	.6418311	.4022874	1.60	0.111	1466377	1.4303
	+					·
/cut1	2.996363	1.690/3			31/40//	6.310133
/cut2	4.728834	1.726345			1.34526	8.112408
/cut3	5.1216	1.732927			1.725125	8.518075
/cut4	6.331271	1.76648			2.869033	9.793509
/cut5	7.859279	1.825368			4.281623	11.43693
/cut6	8.86914	1.864487			5.214812	12.52347

We assessed the goodness of fit of this model, compared with the original dataset, using both a weighted kappa of the model's weighted average mRS prediction (0.44) and the model's most likely mRS prediction (weighted kappa 0.52).

5. Covariance of risk scores

The covariance among input scores (Rockall, CHADS2, and HAS-BLED) in our simulated population is demonstrated in the following tables. Some combinations of scores are impossible, due to the variables included in each. Note the population changes slightly for patients restarting apixaban, due to exclusion of patients with an eGFR of less than 25 from our apixaban simulation.

	CHADS ₂						
Rockall Score	1	2	3	4	5	6	Total
1	89,592	15,980	0	0	0	0	105,572
2	504,856	198,352	43,164	1,692	193	0	748,257
3	852,332	666,235	214,481	39,798	14,548	3,727	1,791,121
4	629,482	920,541	379,431	145,999	63,955	17,954	2,157,362
5	586,914	732,352	352,792	193,319	88,876	23,965	1,978,218
6	216,314	581,721	277,590	147,037	62,414	17,148	1,302,224
7	88,139	229,778	155,953	119,101	55,170	15,342	663,483
8	13,890	86,675	60,348	53,608	20,893	5,566	240,980
Total	2,981,519	3,431,634	1,483,759	700,554	306,049	83,702	8,987,217

	HAS-BLED						
Rockall Score	1	2	3	4	5	6	Total
1	7,942	63,083	33,396	1,150	1	0	105,572
2	25,389	283,198	324,534	108,790	6,194	152	748,257
3	28,567	423,288	872,628	390,826	56,879	18,933	1,791,121
4	24,723	366,357	1,011,973	511,121	166,884	76,304	2,157,362
5	17,474	297,165	889,241	477,019	199,054	98,265	1,978,218
6	7,258	133,665	600,590	340,925	148,210	71,576	1,302,224
7	2,154	53,670	266,094	168,953	113,882	58,730	663,483
8	198	13,296	92,686	64,594	47,139	23,067	240,980
Total	113,705	1,633,722	4,091,142	2,063,378	738,243	347,027	8,987,217

	CHADS ₂						
HAS-BLED	1	2	3	4	5	6	Total
	1 111,290	2,415	0	0	0	0	113,705
	2 1,217,689	380,291	35,742	0	0	0	1,633,722
	3 1,269,482	1,957,655	757,962	106,043	0	0	4,091,142
	4 369,525	1,027,743	518,689	141,072	6,349	0	2,063,378
	5 13,406	62,354	135,957	294,749	177,129	54,648	738,243
	6 127	1,176	35,409	158,690	122,571	29,054	347,027
Tota	2,981,519	3,431,634	1,483,759	700,554	306,049	83,702	8,987,217

Meta-model: assessing sensitivity to input parameters 6.

To assess the sensitivity of our model, we created a meta-model (a regression model comparing our model output to various input parameters). In larger simulations (>10 million subjects), essentially all parameters were statistically significant. We tested for interactions, finding that most were statistically significant, but many reduced, rather than improved, R². The following is our final meta-model command and results for apixaban. The model for warfarin was identical but for the dependent variable.

. regress discounted_QALYs_apix c.day_resuming_anticoag##c.day_resuming_anticoag c.rockall_score##c.day_resuming_anticoag c.chads2vasc_score##c.day_resuming_anticoag c.chads2vasc_score##c.rockall_score i.hasbled_score##c.chads2vasc_score i.hasbled_score##c.rockall_score c.age##c.age c.age##c.discount_rate c.discount_rate##c.discount_rate i.male

note: day_resuming_anticoag omitted because of collinearity

note: day_resuming_anticoag omitted because of collinearity

note: chads2vasc_score omitted because of collinearity

note: rockall_score omitted because of collinearity

note: chads2vasc_score omitted because of collinearity

note: rockall_score omitted because of collinearity

note: age omitted because of collinearity

note: discount_rate omitted because of collinearity

Source	SS	df	MS	Number of obs	=	10628766			
+				F(28, 1062873	7) >	99999.00			
Model	326600008	28	11664286	Prob > F	=	0.0000			
Residual	30663440	10628737	2.88495614	R-squared	=	0.9142			
+				Adj R-squared	=	0.9142			
Total	357263448	10628765	33.6128842	Root MSE	=	1.6985			
	(discounted_	QALYs_apix	Coef. S	td. Ei	rr. t	P> t	[95% Conf.	Interval]
			+						
	C	day_resumin	g_anticoag	.0084452 .	000150	56.01	0.000	.0081497	.0087407
			1						

c.day_resuming_anticoag#c.day_resuming_anticoag	0000836	1.91e-06	-43.79	0.000	0000874	0000799
rockall score	 _ 0684665	0018205	-37 61	0 000	- 07203/7	- 06/8983
day resuming anticoag	.0004000	(omitted)	57.01	0.000	.0720347	.0040703
		(0				
c.rockall_score#c.day_resuming_anticoag	.0001989	.0000206	9.64	0.000	.0001585	.0002394
chads2vasc score	 .1088877	.005442	20.01	0.000	.0982215	.1195539
day resuming anticoag	0	(omitted)				
c.chads2vasc_score#c.day_resuming_anticoag	0004957	.0000206	-24.02	0.000	0005362	0004553
chads2vasc score	I 0	(omitted)				
rockall score	0	(omitted)				
_						
c.chads2vasc_score#c.rockall_score	0023595	.0003027	-7.79	0.000	0029528	0017661
headlad access						
	0250047	0077275	(52	0 000	050152/	010041
2	0350007 _ 0010714	0082002	-4.55	0.000	- 1080612	- 0758816
3	0717714	.0002072	-15.67	0.000	- 1707206	- 122750
*	1317370 1838737	01/7352	-12 /8	0.000	- 21275/1	- 15/0033
5	1030737 2241881	0225967	-12.40	0.000	- 2684769	- 1798994
Ŭ	.2241001	.0223707	7.72	0.000	.2004/07	.1//0//4
chads2vasc_score	0	(omitted)				
	l					
hasbled_score#c.chads2vasc_score						
2	1222265	.0054044	-22.62	0.000	1328189	1116341
3	1401813	.0053116	-26.39	0.000	1505919	1297707
4	1308291	.0053874	-24.28	0.000	1413882	12027
5	1237515	.0054722	-22.61	0.000	1344767	1130262
6	1185103	.0059091	-20.06	0.000	1300918	1069287
rockall_score	0	(omitted)				
	l					
hasbled_score#c.rockall_score	l					
2	.0152868	.0018109	8.44	0.000	.0117376	.018836
3	.025515	.0018409	13.86	0.000	.0219068	.0291231
4	.029067	.0020001	14.53	0.000	.0251469	.0329872
5	.0383718	.0025893	14.82	0.000	.0332968	.0434468
6	.036077	.0031626	11.41	0.000	.0298783	.0422756
	l					
age	577752	.0003148	-1835.29	0.000	578369	577135
	I					
c.age#c.age	000181	2.19e-06	-82.83	0.000	0001853	0001768
	l					
age	0	(omitted)				
discount_rate	-581.7298	.2150055	-2705.65	0.000	-582.1512	-581.3084
	I					

c.age#c.discount_rate	I	6.515738	.0024032	2711.30	0.000	6.511028	6.520448
	I						
discount_rate	I	0	(omitted)				
	I						
c.discount_rate#c.discount_rate	I	482.511	1.942083	248.45	0.000	478.7046	486.3174
	I						
1.male	I	-1.078407	.0011756	-917.34	0.000	-1.080711	-1.076103
_cons	I	56.40798	.0127486	4424.65	0.000	56.38299	56.43296

7. Optimal day of apixaban resumption following UGIB, by CHA2DS2-Vasc and Rockall scores

The range of predicted days on which resumption would confer at least 99.99% of optimal utility are included in parentheses. Blank cells denote impossible combinations of scores.

	Rockall Score								
CHADS ₂ -Vasc Score	0	1	2	3	4	5	6	7	8
1	48 (44 - 51)	49 (46 - 52)	50 (47 - 53)	51 (48 - 54)	52 (49 - 55)	53 (51 - 56)	55 (52 - 58)	56 (53 - 59)	57 (54 - 60)
2		46 (43 - 49)	47 (44 - 50)	48 (45 - 51)	49 (46 - 52)	51 (48 - 53)	52 (49 - 55)	53 (50 - 56)	54 (51 - 57)
3		43 (40 - 46)	44 (41 - 47)	45 (42 - 48)	46 (43 - 49)	48 (45 - 50)	49 (46 - 52)	50 (47 - 53)	51 (48 - 54)
4			41 (38 - 44)	42 (39 - 45)	43 (41 - 46)	45 (42 - 47)	46 (43 - 49)	47 (44 - 50)	48 (45 - 51)
5			38 (35 - 41)	39 (36 - 42)	40 (38 - 43)	42 (39 - 44)	43 (40 - 46)	44 (41 - 47)	45 (42 - 48)
6			35 (32 - 38)	36 (33 - 39)	37 (35 - 40)	39 (36 - 41)	40 (37 - 43)	41 (38 - 44)	42 (39 - 45)
7				33 (30 - 36)	35 (32 - 37)	36 (33 - 39)	37 (34 - 40)	38 (35 - 41)	39 (36 - 42)
8				30 (28 - 33)	32 (29 - 34)	33 (30 - 36)	34 (31 - 37)	35 (32 - 38)	36 (34 - 39)
9				27 (25 - 30)	29 (26 - 31)	30 (27 - 33)	31 (28 - 34)	32 (29 - 35)	33 (31 - 36)