Rheumatologic Perspective on Persistent Right-Hand Tenosynovitis Secondary to Mycobacterium marinum Infection

Gabriela Montes-Rivera, MD, Ricardo Pineda-Gayoso, MD, Sangeeta Rao, MD, Leah B. Strickland-Marmol, MD

Background: Rheumatologic conditions share many symptoms with infectious processes. The immunosuppressive therapies used in rheumatology unfavorably impact any underlying infection. Nontuberculous mycobacteria (NTM) are difficult to grow in culture media and may affect the musculoskeletal system, developing manifestations that may imitate rheumatic inflammatory arthritis. For this reason, surgical debridement and biopsy culture are essential in cases where suspicion remains high.

Case Presentation: We present the case of a patient with progressively worsening right-hand tenosynovitis who was evaluated for rheumatic conditions given initial negative synovial tissue biopsy cultures. He was finally diagnosed with Mycobacterium marinum infectious tenosynovitis after repeated surgical debridement.

CASE PRESENTATION

A 73-year-old male patient with history of type 2 diabetes mellitus, hypertension, hyperlipidemia, hypothyroidism, bilateral knee osteoarthritis, and obstructive sleep apnea, and posttraumatic stress disorder was admit to the internal medicine ward with right hand and wrist cellulitis and indolent suppurative tenosynovitis. Empiric IV ceftriaxone and vancomycin were started as per infectious disease (ID) service with adequate response defined as a reduction of the swelling, erythema, and tenderness of the right hand and wrist. Differential diagnosis included sporotrichosis, nocardia vs NTM infection. Interventional radiology was consulted for right wrist drainage. However, only 1 mL of fluid was obtained. Synovial fluid was sent for cell count and differential, crystal analysis, bacterial cultures, fungal cultures, and acid-fast bacilli (AFB) stains and culture. Neutrophils were 43% and 1 mL of fluid was obtained. Synovial fluid was sent for cell count and differential, crystal analysis, bacterial cultures, fungal cultures, and acid-fast bacilli (AFB) stains and culture. Neutrophils were 43% and lymphocytes were 57%. Crystal analysis was negative. Bacterial culture and mycology were negative. AFB stain and culture results were negative after 6 weeks. Based on gardening history and risk of thorn exposure and low suspicion for common bacterial pathogens, ID service switched antitbiotics to moxifloxacin, minocycline, and linezolid for broad coverage to complete 3 weeks as outpatient. The patient reported significantly improved pain and handgrip strength.

Conclusions: Our case reinforces the vital role of history gathering in establishing diagnoses and underscores the value of clinical suspicion in patients unresponsive to standard treatment for inflammatory arthritis. Tissue biopsy with culture for acid-fast bacilli is crucial for accurate diagnosis in NTM infection, which may imitate rheumatic inflammatory arthritis. Physicians should be keenly aware of this fastidious, indolent organism in the setting of persistent localized tenosynovitis.
Mycobacterium infection

or palpable effusions were appreciated. Range of motion was preserved. Laboratory workup showed resolved leukocytosis and neutrophilia, and normal sedimentation rate or C-reactive protein levels. Antinuclear antibody panel, rheumatoid factor, and anti-cyclic citrullinated peptide levels were normal. Serum uric acid levels were 5.9 mg/dL. Chlamydia, gonorrhea, and HIV tests were negative. A short course of low-dose oral prednisone starting at 15 mg daily with tapering by 5 mg every 3 days was given for presumptive calcium pyrophosphate deposition x gout. Nevertheless, right-hand swelling and pain worsened after steroids. Repeat right upper extremity MRI showed persistent soft tissue edema and inflammation along the dorsum of the hand extending to the digits, tenosynovitis, and fluid in the right wrist and hand swelling, erythema, and tenderness relapsed with 1 dose of prednisone, leading to a repeat right upper extremity synovial biopsy due to high suspicion for persistent infection with a fastidious organism. New synovial tissue biopsy revealed fibro-adipose tissue with prominent vessels and fibrosis, nonnecrotizing, sarcoid-like granuloma with giant cell granulomatous reaction. The AFB and Grocott methenamine silver stains were negative. PCR was negative for AFB. No crystals were reported. After 5 weeks, the synovial biopsy culture was positive for *M. marinum*. Patient was started on oral azithromycin 500 mg daily, ciprofloxacin 500 mg every 3 days, and ethambutol 15 mg/kg daily. At the time of this report, the patient was still completing antibiotic therapy with adequate response and undergoing occupational therapy rehabilitation (Figure 3).

DISCUSSION

M. marinum is an NTM found in bodies of water and marine settings. Infection arises after direct contact of lacerated skin with contaminated water. In a review article of 3 cases of *M. marinum* tenosynovitis, they found that all individuals had wounds with exposure to fish or shrimp while in the water or while handling seafood. The incubation period of this organism is common because of its slow development. For example, presentation from first exposure to symptom onset may take as long as 32 days. In addition, in the same review, surgical intervention occurred in 63 days. It has been reported that AFB stains are positive in just 9% of cases, which confounds diagnosis even more. After synovial tissue culture is obtained, it takes approximately 6 weeks for the organism to grow. Moreover, diagnosis may take longer if it is not suspected.

Four types of *M. marinum* infections have been described. The status of the immune system plays a role in how the manifestations present. The first type is limited, which is seen in immunocompetent persons, characterized by skin involvement, such as erythematous nodular lesions, that may improve on their own in months or years. Conversely, in immunosuppressed patients, the second type of infection may appear. In immunocompromised patients, bacteria can enter the skin via small puncture wounds, leading to ulceration. An inoculum of the organism is required to produce infection, and the incubation period may be longer. The third type presents with musculoskeletal findings, such as arthritis, tenosynovitis, bursitis, or osteomyelitis, as seen in our patient. The fourth type consists of systemic manifestations. Medications that lower the immune system, such as corticosteroids, chemotherapy, and biologic disease modifying agents, may increase the risk for developing this entity. Specifically, anti-tumor necrosis factor inhibitors have been historically associated with mycobacterium infections.

Patients are frequently diagnosed with soft tissue infection, such as abscesses or cellulitis, as in our case. They may at times be found to have other musculoskeletal conditions such as trigger finger. Other similar presenting entities are psoriatic arthritis, rheumatoid arthritis, and remitting seronegative arthritis. These clinical resemblances complicate the scenario, especially when initial cultures are negative, as the treatment for these rheumatic diseases is immunosuppression, which adversely impact the course of this infection is infrequent, estimated to be 0.04 cases per 100,000, with only about 23% of these cases presenting as tenosynovitis. The incubation period ranges from 2 to 4 weeks. Late identification of this organism is common because of its slow development. For example, presentation from first exposure to symptom onset may take as long as 32 days. In addition, in the same review, surgical intervention occurred in 63 days. It has been reported that AFB stains are positive in just 9% of cases, which confounds diagnosis even more. After synovial tissue culture is obtained, it takes approximately 6 weeks for the organism to grow. Moreover, diagnosis may take longer if it is not suspected.

Four types of *M. marinum* infections have been described. The status of the immune system plays a role in how the manifestations present. The first type is limited, which is seen in immunocompetent persons, characterized by skin involvement, such as erythematous nodular lesions, that may improve on their own in months or years. Conversely, in immunosuppressed patients, the second type of infection may appear. In immunocompromised patients, bacteria can enter the skin via small puncture wounds, leading to ulceration. An inoculum of the organism is required to produce infection, and the incubation period may be longer. The third type presents with musculoskeletal findings, such as arthritis, tenosynovitis, bursitis, or osteomyelitis, as seen in our patient. The fourth type consists of systemic manifestations. Medications that lower the immune system, such as corticosteroids, chemotherapy, and biologic disease modifying agents, may increase the risk for developing this entity. Specifically, anti-tumor necrosis factor inhibitors have been historically associated with mycobacterium infections.

Patients are frequently diagnosed with soft tissue infection, such as abscesses or cellulitis, as in our case. They may at times be found to have other musculoskeletal conditions such as trigger finger. Other similar presenting entities are psoriatic arthritis, rheumatoid arthritis, and remitting seronegative arthritis. These clinical resemblances complicate the scenario, especially when initial cultures are negative, as the treatment for these rheumatic diseases is immunosuppression, which adversely impact the course of this infection is infrequent, estimated to be 0.04 cases per 100,000, with only about 23% of these cases presenting as tenosynovitis. The incubation period ranges from 2 to 4 weeks. Late identification of this organism is common because of its slow development. For example, presentation from first exposure to symptom onset may take as long as 32 days. In addition, in the same review, surgical intervention occurred in 63 days. It has been reported that AFB stains are positive in just 9% of cases, which confounds diagnosis even more. After synovial tissue culture is obtained, it takes approximately 6 weeks for the organism to grow. Moreover, diagnosis may take longer if it is not suspected.

Four types of *M. marinum* infections have been described. The status of the immune system plays a role in how the manifestations present. The first type is limited, which is seen in immunocompetent persons, characterized by skin involvement, such as erythematous nodular lesions, that may improve on their own in months or years. Conversely, in immunosuppressed patients, the second type of infection may appear. In immunocompromised patients, bacteria can enter the skin via small puncture wounds, leading to ulceration. An inoculum of the organism is required to produce infection, and the incubation period may be longer. The third type presents with musculoskeletal findings, such as arthritis, tenosynovitis, bursitis, or osteomyelitis, as seen in our patient. The fourth type consists of systemic manifestations. Medications that lower the immune system, such as corticosteroids, chemotherapy, and biologic disease modifying agents, may increase the risk for developing this entity. Specifically, anti-tumor necrosis factor inhibitors have been historically associated with mycobacterium infections.

Patients are frequently diagnosed with soft tissue infection, such as abscesses or cellulitis, as in our case. They may at times be found to have other musculoskeletal conditions such as trigger finger. Other similar presenting entities are psoriatic arthritis, rheumatoid arthritis, and remitting seronegative arthritis. These clinical resemblances complicate the scenario, especially when initial cultures are negative, as the treatment for these rheumatic diseases is immunosuppression, which adversely impact
the fastidious infection. In our case, the improved swelling and range of motion after the 3-week course of empiric antibiotics for suppurative tenosynovitis was initially reassuring that the previous infection had been successfully treated. Subsequently, the presence of chondrocalcinosis in the triangular fibrocartilage in the right-hand X-rays, persistent pain, and the tophi-like appearance of the right third proximal interphalangeal nodule raised concerns for crystalline arthropathies, such as calcium pyrophosphate deposition vs gout. Nonetheless, given the lack of response to low-dose steroids, an ongoing infectious process was strongly considered.

Sarcoidosis was a concern after the first synovial biopsy revealed noncaseating granulomas and negative stains and cultures. Sarcoid tenosynovitis is rare with only 22 cases described as per a 2015 report. Musculoskeletal involvement in sarcoidosis has been reported in 1 to 13% of sarcoid patients. Once again, unresponsiveness to steroids led to another synovial biopsy for culture due to potential infection. Akin to other cases, more than one surgical debridement was required to diagnose our patient.

CONCLUSIONS
Our case reinforces the vital role of history gathering in establishing diagnoses. It underscores the value of clinical suspicion especially in patients unresponsive to standard treatment for inflammatory arthritis, namely corticosteroids. Tissue biopsy with culture for AFB is crucial for accurate diagnosis in NTM infection, which may imitate rheumatic inflammatory arthritis. Clinicians should be keenly aware of this fastidious, indolent organism in the setting of persistent localized tenosynovitis.

Author affiliations
1 Orlando Veterans Affairs Medical Center Lake Nona, Florida
2 James A. Haley Veterans Hospital, Tampa, Florida

Author disclosures
The authors report no actual or potential conflicts of interest or outside sources of funding with regard to this article.

Disclaimer
The opinions expressed herein are those of the authors and do not necessarily reflect those of Federal Practitioner, Frontline Medical Communications Inc., the US Government, or any of its agencies.

Ethics and consent
The patient provided signed informed consent. Patient identifiers were removed to protect the patient’s identity.

References