cutis FAST FACTS FOR BOARD REVIEW Series Editor: William W. Huang, MD, MPH ## Genetic Pathways, Part 1 Alyssa Daniel, MD Dr. Daniel is from the Department of Dermatology, Wake Forest University, Winston-Salem, North Carolina. The author reports no conflict of interest. | Gene | Gene
Function | Loss of
Function | Disease
Association | Inheritance | Clinical Findings | |--|---|--|--|---|--| | ATP-binding cassette, sub-family A, member 12 (ABCA12) | Encodes for a
membrane protein
in epidermal lamellar
granules/bodies
that is involved in
energy-dependent
lipid transport | Improper formation of lamellar granules/ bodies and incomplete/lack of secretion of glucosylceramide (essential epidermal lipid) leading to abnormal formation of the lipid bilayer, resulting in hyperkeratosis and abnormal barrier function | Harlequin ichthyosis | AR | Thick collodion membrane present at birth, deep fissures, ectropion, eclabion, PDA, thyroid aplasia; high neonatal mortality; treatment with retinoids; ichthyosiform erythroderma seen later in childhood | | ATPase, Ca ²⁺ transporting, cardiac muscle, slow twitch 2 (ATP2A2) | Encodes SERCA2,
which causes Ca ²⁺
influx into the endo-
plasmic reticulum | Abnormal intracel-
lular signaling results
in acantholysis in the
stratum spinosum | Darier disease
(keratosis
follicularis) | AD | Crusted keratotic papules in a
seborrheic distribution, kera-
totic papules on the hands,
white oral papules, red-white
nails with V-shaped nicking | | ATPase, Ca ²⁺ transporting, type 2C, member 1 (ATP2C1) | Encodes hSPCA1,
which is important
for influx of Ca ²⁺
into the Golgi | Inadequate Ca ²⁺ stores in the endo-
plasmic reticulum
cause acantholysis
secondary to incom-
plete processing of
Ca ²⁺ -dependent
desmosomal proteins
and apoptosis of
epidermal cells | Hailey-Hailey
disease
(benign familial
pemphigus) | AD | Flaccid blisters and erosions
on the neck and intertriginous
areas | | Ectodysplasin A (EDA); ectodysplasin A receptor (EDAR); EDAR-associated death domain (EDARADD) | EDA encodes for the ligand ectodysplasin A and binds to EDAR; EDARADD is an intracellular adaptor protein that assists in transducing the signal from the activated receptor to the nucleus needed to activate transcription factor NF-κβ | Loss of function leads to abnormal signaling and decreased transcription of NF-κβ | Hypohidrotic
ectodermal
dysplasia | XLR (EDA),
AD/AR (EDAR),
AR (EDARADD) | Sparse hair, hypodontia, peg teeth, hyperpyrexia, decreased sweating | | | | | | | continued on next page | ### (continued) | Gene | Gene
Function | Loss of Function | Disease
Association | Inheritance | Clinical Findings | |--|--|---|--|---------------|--| | GNAS complex
locus (GNAS1) | Encodes the
α subunit of G
proteins; associates
with GPCRs and
stimulates adenylate
cyclase | Gain of function with mutation, overexpression in tissues where adenylate cyclase acts as a second messenger (organs with hormonal control and bone) ^a | McCune-Albright
syndrome | Sporadic | Large café au lait patches and polyostotic fibrous dysplasia, precocious puberty | | Inhibitor of κ light polypeptide gene enhancer in B-cells, kinase γ (<i>IKBKG</i>)/NF-κβ essential modulator (<i>NEMO</i>) | Subunit of a kinase that activates NF-κβ, a transcription factor important for altering expression of a number of genes | Failure to activate NF-κβ leads to TNF-α-induced apoptosis | Incontinentia
pigmenti | XLD mosaicism | Lethal in males; 4 disease stages: (1) inflammatory/vesicular, (2) verrucous, (3) hyperpigmented, (4) hypopigmented/atrophic; skin lesions follow Blaschko lines; alopecia, nail dystrophy, peg teeth, seizures, eye abnormalities | | | | | Hypohidrotic
ectodermal
dysplasia with
immunodeficiency | XLR | Affects male neonates born to women with incontinentia pigmenti; ectodermal dysplasia | | Porcupine homolog (Drosophila) (PORCN) | Encodes a putative O-acyltransferase involved in palmitoylation and Wnt secretion in the endoplasmic reticulum; Wnt is a morphogen important in fetal development; Wnt is involved in regulating cell-to-cell interactions during embryogenesis and in some cancers; Wnt binds to frizzled receptor (GPCR), which activates Dvl; Dvl blocks the β -catenin destruction complex, leading to accumulation of β -catenin; β -catenin acts as a transcription factor in the nucleus for target genes | Dysfunctional and decreased Wnt signaling leads to increased destruction of β -catenin, gene is expressed in the ectoderm, mesoderm, and endoderm | Focal demal
hypoplasia
(Goltz syndrome) | XLD mosaicism | Telangiectasia, hypopigmentation, hyperpigmentation, dermal atrophy, raspberrylike papillomas in the perioral/anal regions, lobster claw deformities, hypodontia, ocular defects | | | | | | | continued on next page | #### (continued) | Gene | Gene
Function | Loss of Function | Disease
Association | Inheritance | Clinical Findings | |---|---|--|---|-------------|---| | Serine peptidase
inhibitor, Kazal
type 5 (SPINK5) | Encodes for LEKTI,
a serine protease
inhibitor | Uncontrolled proteolytic activity leads to degradation of lamellar body lipid processing enzymes | Netherton
syndrome | AR | Ichthyosis linearis circumflexa,
trichorrhexis invaginata, severe
atopic dermatitis, elevated IgE | | () | Catalyzes the formation of γ-glutamyl lysine isopeptide bonds between proteins, calcium dependent | Incomplete cross-linking of structural proteins (involucrin, SPRP, loricrin, keratin, desmosomal proteins), dysfunctional insoluble protein envelope | Lamellar
ichthyosis | AR | Collodion membrane present
at birth, erythroderma replaced
by brown platelike scale in a
mosaic pattern (involves flexures)
with minimal scale, ectropion
and eclabion | | | | | Nonbullous
congenital
ichthyosiform
erythroderma | AR | Collodion membrane present at
birth, fine scaling with erythema
prominent on flexures, growth
retardation | Abbreviations: AR, autosomal recessive; PDA, patent ductus arteriosus; SERCA2, sarcoendoplasmic reticulum Ca2+-ATPase; AD, autosomal dominant; hSPCA1, human secretory pathway Ca2+-ATPase 1; NF- $\kappa\beta$, nuclear factor $\kappa\beta$; XLR, X-linked recessive; GPCRs, G protein–coupled receptors; TNF- α , tumor necrosis factor α ; XLD, X-linked dominant; LEKTI, lympho-epithelial Kazal-type-related inhibitor; SPRP, small proline-rich peptide. ^aMutation is related to gain of function. #### **Practice Questions** - 1. Which keratinization disorder is characterized by drastically lower levels of lamellar bodies? - a. Harlequin ichthyosis - b. ichthyosis vulgaris - c. lamellar ichthyosis - d. nonbullous congenital ichthyosiform erythroderma - e. X-linked ichthyosis - 2. Mutation of this enzyme leads to uncontrolled proteolytic activity causing degradation of lamellar body lipid processing enzymes: - a. FALDH (fatty aldehyde dehydrogenase) - b. LEKTI (lympho-epithelial Kazal-type-related inhibitor) - c. PEX7 (perioxsomal biogenesis factor 7) - d. PHYH (phytanoyl-CoA hydroxylase) - e. NSDHL (NAD[P] dependent steroid dehydrogenase-like) - 3. A 30-year-old man presented for evaluation of abnormal nails. Physical examination revealed a red streak with distal V-shaped nicking. Numerous keratotic papules on the hands and chest and oral papules also were noted. The gene responsible for these findings encodes a Ca²⁺-ATPase responsible for a Ca²⁺ influx into what cellular structure? - a. cytoplasm - b. endoplasmic reticulum - c. Golgi - d. nucleus - e. ribosome - 4. A female neonate aged 2 weeks presented with linear and whorled vesicles on the thighs and trunk. The delivery was uncomplicated. The patient was afebrile, but her mother said she has been "doing well" at home. On pathology, what do you expect to see? - a. apoptosis of epidermal cells - b. cell-poor blister - c. molding and margination of chromatin as well as multinucleated giant cells - d. numerous pseudohyphae - e. spongiosis of epidermal cells - 5. A young child presents with linear atrophic plaques with fat herniation and raspberrylike oral papillomas. What signal transduction pathway is altered in this syndrome? - a. ABCA12 (ATP-binding cassette, sub-family A, member 12) - b. adenylate cyclase - c. β-catenin - d. LEKTI (lympho-epithelial Kazal-type-related inhibitor) - e. nuclear factor κ light chain enhancer of activated B cells Fact sheets and practice questions will be posted monthly. Answers are posted separately on www.cutis.com.