NEUROLOGY MARCH 2010 • CLINICAL PSYCHIATRY NEWS # Technique May Improve Sleep in Parkinson's BY DAMIAN MCNAMARA MIAMI BEACH — Stimulation of the pedunculopontine nucleus could be a new target to treat excessive daytime sleepiness and other sleep disorders in people with Parkinson's disease, recent reports in the literature show. "Daytime sleepiness is a frequent and disabling problem in Parkinson's disease," Dr. Isabelle Arnulf said at the World Federation of Neurology World Congress on Parkinson's Disease and Related Disorders. Although excessive daytime sleepiness can interfere with activities of daily life for Parkinson's disease patients, increased risk for a driving accident is a main concern. Dr. Arnulf, a sleep disorders specialist at Hôpital Pitié-Salpêtrière in Paris, advised telling patients to be cautious when driving. "The most dangerous for driving are those who do not feel their own sleepiness." In the first report of its kind, researchers at the University of Toronto demonstrated last year that deep brain stimulation of the pedunculopontine nucleus (PPN) alters human sleep patterns (Ann. Neurol. 2009;66:110-4). They studied REM and non-REM phases for five parkinsonian patients un- dergoing unilateral deep brain stimulation of their PPN. Nocturnal REM sleep time nearly doubled during stimulation compared with periods when stimulation was turned off. The implication is that helping people with Parkinson's disease sleep better at night will decrease daytime sleepiness. High frequency (80 Hz) PPN stimulation produces a sedative effect that "even # 2 DOSAGE AND ADMINISTRATION #### 2 1 Usual Dose FANAPT must be titrated slowly from a low starting dose to avoid orthostatic hypotension due to its alpha-adrenergic blocking properties. The recommended starting dose for FANAPT tablets is 1 mg twice daily. Increases to reach the target dose range of 6-12 mg twice daily may be made with daily dosage adjustments to 2 mg twice daily, 4 mg twice daily, 6 mg twice daily, 8 mg twice daily, 10 mg twice daily, and 12 mg twice daily on days 2, 3, 4, 5, 6, and 7, respectively. Efficacy was demonstrated with FANAPT in a dose range of 6 to 12 mg twice daily. Prescribers should be mindful of the fact that patients need to be titrated to an effective dose of FANAPT. Thus, control of symptoms may be delayed during the first 1 to 2 weeks of treatment compared to some other antipsychotic drugs that do not require similar titration. Prescribers should also be aware that some adverse effects associated with FANAPT use are dose related. The maximum recommended dose is 12 mg twice daily (24 mg/day); FANAPT doses above 24 mg/day have not been systematically evaluated in the clinical trials. FANAPT can be administered without regard to meals. # 2.2 Dosage in Special Populations Dosage adjustments are not routinely indicated on the basis of age, gender, race, or renal impairment status [see Use in Specific Populations (8.6, 8.7)]. # Dosage adjustment for patients taking FANAPT concomitantly with potential CYP2D6 inhibitors: FANAPT dose should be reduced by one-half when administered concomitantly with strong CYP2D6 inhibitors such as fluoxetine or paroxetine. When the CYP2D6 inhibitor is withdrawn from the combination therapy, FANAPT dose should then be increased to where it was before [see Drug Interactions (7.1)]. # Dosage adjustment for patients taking FANAPT concomitantly with potential CYP3A4 inhibitors: FANAPT dose should be reduced by one-half when administered concomitantly with strong CYP3A4 inhibitors such as ketoconazole or clarithromycin. When the CYP3A4 inhibitor is withdrawn from the combination therapy, FANAPT dose should be increased to where it was before [see Drug Interactions (7.1)]. *Hepatic Impairment:* FANAPT is not recommended for patients with hepatic impairment. # 2.3 Maintenance Treatment Although there is no body of evidence available to answer the question of how long the patient treated with FANAPT should be maintained, it is generally recommended that responding patients be continued beyond the acute response. Patients should be periodically reassessed to determine the need for maintenance treatment. # ${\bf 2.4}\ Reinitiation\ of\ Treatment\ in\ Patients\ Previously\ Discontinued$ Although there are no data to specifically address re-initiation of treatment, it is recommended that the initiation titration schedule be followed whenever patients have had an interval off FANAPT of more than 3 days. # $2.5 \ Switching \ from \ Other \ Antipsychotics$ There are no specific data to address how patients with schizophrenia can be switched from other antipsychotics to FANAPT or how FANAPT can be used concomitantly with other antipsychotics. Although immediate discontinuation of the previous antipsychotic treatment may be acceptable for some patients with schizophrenia, more gradual discontinuation may be most appropriate for others. In all cases, the period of overlapping antipsychotic administration should be minimized. # 4 CONTRAINDICATIONS FANAPT is contraindicated in individuals with a known hypersensitivity reaction to the product, Reactions have included pruritus and urticaria. # 5 WARNINGS AND PRECAUTIONS ### 5.1 Increased Risks in Elderly Patients with Dementia-Related Psychosis Increased Mortality Psychosis Increased Mortality Elderly patients with dementia-related psychosis treated with atypical antipsychotic drugs are at an increased risk of death compared to placebo. FANAPT is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning]. # Cerebrovascular Adverse Events, Including Stroke In placebo-controlled trials with risperidone, aripiprazole, and olanzapine in elderly patients with dementia, there was a higher incidence of cerebrovascular adverse events (cerebrovascular accidents and transient ischemic attacks) including fatalities compared to placebo-treated patients. FANAPT is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning]. ### 5.2 QT Prolongation In an open-label QTc study in patients with schizophrenia or schizo-affective disorder (n=160), FANAPT was associated with QTc prolongation of 9 msec at an iloperidone dose of 12 mg twice daily. The effect of FANAPT on the QT interval was augmented by the presence of CYP450 2D6 or 3A4 metabolic inhibition (paroxetine 20 mg once daily and keto-conazole 200 mg twice daily, respectively). Under conditions of metabolic inhibition for both 2D6 and 3A4, FANAPT 12 mg twice daily was associated with a mean QTcF increase from baseline of about 19 msec. No cases of torsade de pointes or other severe cardiac arrhythmias were observed during the pre-marketing clinical program. The use of FANAPT should be avoided in combination with other drugs that are known to prolong QTc including Class 1A (e.g., quinidine, procainamide) or Class III (e.g., amiodarone, sotalol) antiarrhythmic medications, antipsychotic medications (e.g., chlorpromazine, thioridazine), antibiotics (e.g., gatifloxacin, moxifloxacin), or any other class of medications known to prolong the QTc interval (e.g., pentamidine, levomethadyl acetate, methadone). FANAPT should also be avoided in patients with congenital long QT syndrome and in patients with a history of cardiac arrhythmias. Certain circumstances may increase the risk of torsade de pointes and/or sudden death in association with the use of drugs that prolong the QTc interval, including (1) bradycardia; (2) hypokalemia or hypomagnesemia; (3) concomitant use of other drugs that prolong the QTc interval; and (4) presence of congenital prolongation of the QT interval; (5) recent acute myocardial infarction; and/or (6) uncompensated heart failure Caution is warranted when prescribing FANAPT with drugs that inhibit FANAPT metabolism [see Drug Interactions (7.1)], and in patients with reduced activity of CYP2D6 [see Clinical Pharmacology (12.3) in the full prescribing information]. It is recommended that patients being considered for FANAPT treatment who are at risk for significant electrolyte disturbances have baseline serum potassium and magnesium measurements with periodic monitoring. Hypokalemia (and/or hypomagnesemia) may increase the risk of QT prolongation and arrhythmia. FANAPT should be avoided in patients with histories of significant cardiovascular illness, e.g., QT prolongation, recent acute myocardial infarction, uncompensated heart failure, or cardiac arrhythmia. FANAPT should be discontinued in patients who are found to have persistent QTc measurements >500 ms. If patients taking FANAPT experience symptoms that could indicate the occurrence of cardiac arrhythmias, e.g., dizziness, palpitations, or syncope, the prescriber should initiate further evaluation, including cardiac monitoring. # **5.3 Neuroleptic Malignant Syndrome (NMS)**A potentially fatal symptom complex sometimes referred to as Neuro- A potentially ratal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with administration of antipsychotic drugs. Clinical manifestations include hyperpyrexia, muscle rigidity, altered mental status (including catatonic signs) and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysarrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure. The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases in which the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system (CNS) pathology. The management of this syndrome should include: (1) immediate discontinuation of the antipsychotic drugs and other drugs not essential to concurrent therapy, (2) intensive symptomatic treatment and medical monitoring, and (3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for NMS. If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored, since recurrences of NMS have been reported. # 5.4 Tardive Dyskinesia Tardive dyskinesia is a syndrome consisting of potentially irreversible, involuntary, dyskinetic movements, which may develop in patients treated with antipsychotic drugs. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is occurs when the patient actively tries to maintain wakefulness," according to Dr. Arnulf. In her experience, patients trying to stay awake during this stimulation demonstrate periods of microsleep. She showed meeting attendees a video of a man undergoing stimulation who, despite trying to fight off sleep, went on to establish sleep stage I and then non-REM sleep stage II within 2 minutes. The patient fell asleep 10 out of 10 times, she said. The results that were obtained in the pilot study suggest that the PPN "could be a new target for sleep disorders," she said. Sleep attacks, or the sudden onset of sleep without prodroma, are primarily described in narcolepsy. Risk factors include an Epworth Sleepiness Scale score greater than 10 (range, 0-24), use of dopamine agonists, or high levodopa equivalent doses, Dr. Patients can be screened for excessive daytime sleepiness using objective measures such as the Multiple Sleep Latency Test and the Maintenance of Wakefulness Test. Among the possible causes of exces- sive daytime sleepiness in people with Parkinson's disease are the side effects of dopaminergic agents, insufficient sleep at nighttime, and lesions in arousal systems. To treat excessive daytime sleepiness, one could decrease or switch dopamine agonists, or consider replacement of a dopamine agonist with levodopa. Combining dopamine agonist therapy with a stimulant drug is another option, Dr. Arnulf said. Reports in the literature support sleepiness as a medication side effect. For example, in one study, researchers ob- served a "huge increase" in sedation effects—a decrease in sleep latency—about 3-5 hours after 12 healthy volunteers took a dopamine agonist (Br. J. Clin. Pharmacol. 2009;67:333-40). A common question is whether sustained-release dopamine agonists are less sedative, Dr. Arnulf said. Dopamine-related sleepiness usually occurs at the peak of the dopamine agonist effect, she said, but a blunted peak does not prevent sleepiness from occurring, Dr. Arnulf had no relevant financial disclosures. impossible to rely on prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown. The risk of developing tardive dyskinesia and the likelihood that it will become irreversible are believed to increase as the duration of treat-ment and the total cumulative dose of antipsychotic administered increases. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses. There is no known treatment for established cases of tardive dyskinesia, although the syndrome may remit, partially or completely, if anti-psychotic treatment is withdrawn. Antipsychotic treatment itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown. Given these considerations, FANAPT should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia. Chronic antipsychotic treatment should generally be reserved for patients who suffer from a chronic illness that (1) is known to respond to antipsychotic drugs, and (2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically. If signs and symptoms of tardive dyskinesia appear in a patient on FANAPT, drug discontinuation should be considered. However, some patients may require treatment with FANAPT despite the presence of the syndrome. **5.5 Hyperglycemia and Diabetes Mellitus**Hyperglycemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics including FANAPT. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycemia-related adverse events is not completely understood. However, epidemiological studies suggest an increased risk of treatment emergent hyperglycemia-related adverse events in patients treated with the atypical antipsychotics included in these studies. Because FANAPT was not marketed at the time these studies were performed, it is not known if FANAPT is associated with this increased risk. Precise risk estimates for hyperglycemia-related adverse events in patients treated with atypical antipsychotics are not available. Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g., obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment. Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness. Patients who develop symptoms of hyperglycemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing. In some cases, hyperglycemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of antidiabetic treatment despite discontinuation of the suspect drug. # 5.6 Weight Gain Based on the pooled data from the four placebo-controlled, 4- or 6-week. fixed- or flexible-dose studies, the proportions of patients having a weight gain of ≥7% body weight was 12% for FANAPT 10-16 mg/day, 18% for FANAPT 20-24 mg/day, and 13% for FANAPT (combined doses) versus 4% for placebo. The mean weight change from baseline to endpoint in the short-term studies was -0.1 kg for placebo versus 2.0 kg for FANAPT-treated patients. Across all short- and long-term studies, the overall mean change from baseline at endpoint was 2.1 kg. # 5.7 Seizures In short-term placebo-controlled trials (4- to 6-weeks), seizures occurred in 0.1% (1/1344) of patients treated with FANAPT compared to 0.3% (2/587) on placebo. As with other antipsychotics, FANAPT should be used cautiously in patients with a history of seizures or with conditions that potentially lower the seizure threshold, e.g., Alzheimer's dementia. Conditions that lower the seizure threshold may be more prevalent in a population of 65 years or older. ### 5.8 Orthostatic Hypotension and Syncope FANAPT can induce orthostatic hypotension associated with dizziness, tachycardia, and syncope. This reflects its alpha1-adrenergic antagonist properties. In double-blind placebo-controlled short-term studies, where the dose was increased slowly, as recommended above, syncope was reported in 0.4% (5/1344) of patients treated with FANAPT, compared with 0.2% (1/587) on placebo. Orthostatic hypotension was reported in 5% of patients given 20-24 mg/day, 3% of patients given 10-16 mg/day, and 1% of patients given placebo. More rapid titration would be expected to increase the rate of orthostatic hypotension and syncope. FANAPT should be used with caution in patients with known cardiovascular disease (e.g., heart failure, history of myocardial infarction, ischemia, or conduction abnormalities), cerebrovascular disease, or conditions that predispose the patient to hypotension (dehydration, hypovolemia, and treatment with antihypertensive medications). Monitoring of orthostatic vital signs should be considered in patients who are vulnerable to # 5.9 Leukopenia, Neutropenia and Agranulocytosis In clinical trial and postmarketing experience, events of leukopenia/ neutropenia have been reported temporally related to antipsychotic agents. Agranulocytosis (including fatal cases) has also been reported. Possible risk factors for leukopenia/neutropenia include preexisting low white blood cell count (WBC) and history of drug induced leukopenia/neutropenia. Patients with a pre-existing low WBC or a history of drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and should discontinue FANAPT at the first sign of a decline in WBC in the absence of other causative factors. Patients with neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur. Patients with severe neutropenia (absolute neutrophil count <1000/mm³) should discontinue FANAPT and have their WBC followed until recovery. # 5.10 Hyperprolactinemia As with other drugs that antagonize dopamine D2 receptors, FANAPT elevates prolactin levels. Hyperprolactinemia may suppress hypothalamic GnRH, resulting in reduced pituitary gonadotropin secretion. This, in turn, may inhibit reproductive function by impairing gonadalsteroidogenesis in both female and male patients. Galactorrhea, amenorrhea, gynecomastia, and impotence have been reported with prolactin-elevating compounds. Longstanding hyperprolactinemia when associated with hypogonadism may lead to decreased bone density in both female and male patients. Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin-dependent *in vitro*, a factor of potential importance if the prescription of these drugs is contemplated in a patient with previously detected breast cancer. Mammary gland proliferative changes and increases in serum prolactin were seen in mice and rats treated with FANAPT [see Nonclinical Toxicology (13.1) in the full prescribing information]. Neither clinical studies nor epidemiologic studies conducted to date have shown an association between chronic administration of this class of drugs and tumorigenesis in humans; the available evidence is considered too limited to be conclu- In a short-term placebo-controlled trial (4-weeks), the mean change from baseline to endpoint in plasma prolactin levels for the FANAPT 24 mg/day-treated group was an increase of 2.6 ng/mL compared to a decrease of 6.3 ng/mL in the placebo-group. In this trial, elevated plasma prolactin levels were observed in 26% of adults treated with FANAPT . compared to 12% in the placebo group. In the short-term trials, FANAPT was associated with modest levels of prolactin elevation compared to greater prolactin elevations observed with some other antipsychotic agents. In pooled analysis from clinical studies including longer term trials, in 3210 adults treated with iloperidone, gynecomastia was reported in 2 male subjects (0.1%) compared to 0% in placebo-treated patients, and galactorrhea was reported in 8 female subjects (0.2%) compared to 3 female subjects (0.5%) in placebo-treated patients. # 5.11 Body Temperature Regulation Disruption of the body's ability to reduce core body temperature has been attributed to antipsychotic agents. Appropriate care is advised when prescribing FANAPT for patients who will be experiencing conditions which may contribute to an elevation in core body temperature, e.g., exercising strenuously, exposure to extreme heat, receiving concomitant medication with anticholinergic activity, or being subject to dehydration. # 5.12 Dysphagia Esophageal dysmotility and aspiration have been associated with antipsychotic drug use. Aspiration pneumonia is a common cause of