BY FRANCES CORREA

The federal government has launched a new website that provides evidence-based information on complementary and alternative medicine treatments, according to the National Center for Complementary and Alternative Medicine, one of the National Institutes of Health.

The site (http://nccam.nih.gov/) pro-

vides information on the safety and efficacy of complementary and alternative medicine (CAM) treatments such as dietary supplements, herbs, and probiotics, as well as meditation, acupuncture, chiropractic, and massage.

The site was developed based on a series of focus groups and in-person surveys that the NCCAM conducted with physicians, nurses, and physician assistants. Respondents noted that they were interested in online access to evidence-based information about CAM. According to the 2007 National Health Interview Survey, 40% of adults and 12% of children use some form of CAM. The most common uses are for musculoskeletal problems such as back, neck, or joint pain.

It's essential that physicians talk to patients about CAM use, NCCAM spokesperson Katy Danielson said in an interview: "Talking not only allows fully integrated care, but it also minimizes risks of interactions among a patient's treatments. ... When providers ask their patients about CAM use, they can ensure that they are fully informed and can help patients make informed ... decisions."

ARTHRITIS

37

The site offers patient resources including fact sheets, links to reviews and clinical practice guidelines, a summary of research studies, and a program for continuing educational credit.

not intended to include reactions (1) already listed in previous tables or elsewhere in labeling, (2) for which a drug cause was remote, (3) which were so general as to be uninformative, (4) which were not considered to have significant clinical implications, or (5) which occurred at a rate equal to or less than placebo. Reactions are categorized by body system according to the following definitions: frequent adverse reactions are those occurring in at least 1/100 patients; infrequent adverse reactions are those occurring in 1/100 to 1/1000 patients; rare reactions are those occurring in fewer than 1/1000 patients. Cardiac Disorders-Frequent: palpitations; Infrequent: myocardial infarction and tachycardia. Ear and Labyrinth Disorders-Frequent: vertigo; Infrequent: ear pain and tinnitus. Endocrine Disorders Infrequent: hypothyroidism. Eve Disorders—Frequent: vision blurred: Infrequent: diplopia and visual disturbance. Gastrointestinal Disorders-Frequent: flatulence; Infrequent. eructation, gastritis, halitosis, and stomatitis; Rare: gastric ulcer, hematochezia, and melena. General Disorders and Administration Site Conditions—Frequent: chills/rigors; Infrequent: feeling abnormal, feeling hot and/or cold, malaise, and thirst; Rare: gait disturbance. Infections and Infestations—Infrequent: gastroenteritis and laryngitis. Investigations— Frequent: weight increased; Infrequent: blood cholesterol increased. Metabolism and Nutrition Disorders—Infrequent: dehydration and hyperlipidemia; Rare: dyslipidemia. Musculoskeletal and Connective Tissue Disorders—Frequent: musculoskeletal pain; Infrequent: muscle tightness and muscle twitching. Nervous System Disorders-Frequent dysgeusia, lethargy, and parasthesia/hypoesthesia; *Infrequent:* disturbance in attention, dyskinesia, myoclonus, and poor quality sleep; *Rare:* dysarthria. **Psychiatric Disorders**— Frequent: abnormal dreams and sleep disorder; Infrequent: apathy, bruxism, disorientation/ confusional state, irritability, mood swings, and suicide attempt; *Rare:* completed suicide. Renal and Urinary Disorders—Infrequent: dysuria, micturition urgency, nocturia, polyuria, and urine odor abnormal. Reproductive System and Breast Disorders—Frequent: anorgasmia/orgasm abnormal; Infrequent: menopausal symptoms, and sexual dysfunction. Respiratory, Thoracic and Mediastinal Disorders—Frequent: yawning; Infrequent: throat tightness. Skin and Subcutaneous Tissue Disorders-Infrequent: cold sweat, dermatitis contact, erythema, increased tendency to bruise, night sweats, and photosensitivity reaction; Rare: ecchymosis. Vascular Disorders-Frequent: hot flush; Infrequent: flushing, orthostatic hypotension, and peripheral coldness.

Postmarketing Spontaneous Reports—The following adverse reactions have been identified during postapproval use of Cymbalta. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Adverse reactions reported since market introduction that were temporally related to

Adverse reactions reported since market introduction that were temporally related to duloxetine therapy and not mentioned elsewhere in labeling include: anaphylactic reaction, aggression and anger (particularly early in treatment or after treatment discontinuation), angioneurotic edema, erythema multiforme, extrapyramidal disorder, galactorrhea, glaucoma, gynecological bleeding, hallucinations, hyperglycemia, hyperprolactinemia, hypersensitivity, hypertensive crisis, muscle spasm, rash, restless legs syndrome, seizures upon treatment discontinuation, supraventricular arrhythmia, tinnitus (upon treatment discontinuation), trismus, and urticaria.

Serious skin reactions including Stevens-Johnson Syndrome that have required drug discontinuation and/or hospitalization have been reported with duloxetine.

DRUG INTERACTIONS: Both CYP1A2 and CYP2D6 are responsible for duloxetine metabolism. **Inhibitors of CYP1A2**—When duloxetine 60 mg was co-administered with fluvoxamine 100 mg, a potent CYP1A2 inhibitor, to male subjects (n=14) duloxetine AUC was increased approximately 6-fold, the C_{max} was increased about 2.5-fold, and duloxetine t_{1/2} was increased approximately 3-fold. Other drugs that inhibit CYP1A2 metabolism include cimetidine and quinolone antimicrobials such as ciprofloxacin and enoxacin *[see Warnings and Precautions].*

Inhibitors of CYP2D6—Concomitant use of duloxetine (40 mg once daily) with paroxetine (20 mg once daily) increased the concentration of duloxetine AUC by about 60%, and greater degrees of inhibition are expected with higher doses of paroxetine. Similar effects would be expected with other potent CYP2D6 inhibitors (e.g., fluoxetine, quinidine) [see Warnings and Precautions].

Dual Inhibition of CYP1A2 and CYP2D6—Concomitant administration of duloxetine 40 mg twice daily with fluvoxamine 100 mg, a potent CYP1A2 inhibitor, to CYP2D6 poor metabolizer subjects (n=14) resulted in a 6-fold increase in duloxetine AUC and C_{max}.

Drugs that Interfere with Hemostasis (e.g., NSAIDs, Aspirin, and Warfarin)— Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs or SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when duloxetine is initiated or discontinued *Isee Warnings and Precautions*].

Lorazepam—Under steady-state conditions for duloxetine (60 mg Q 12 hours) and lorazepam (2 mg Q 12 hours), the pharmacokinetics of duloxetine were not affected by co-administration.

Temazepam—Under steady-state conditions for duloxetine (20 mg qhs) and temazepam (30 mg qhs), the pharmacokinetics of duloxetine were not affected by co-administration.

Drugs that Affect Gastric Acidity—Cymbalta has an enteric coating that resists dissolution until reaching a segment of the gastrointestinal tract where the pH exceeds 5.5. In extremely acidic conditions, Cymbalta, unprotected by the enteric coating, may undergo hydrolysis to form naphthol. Caution is advised in using Cymbalta in patients with conditions that may slow gastric emptying (e.g., some diabetics). Drugs that raise the gastrointestinal pH may lead to an earlier release of duloxetine. However, co-administration of Cymbalta with aluminum- and magnesium-containing antacids (51 mEq), or Cymbalta, with famotidine, had no significant effect on the rate or extent of duloxetine absorption after administration of a 40 mg oral dose. It is unknown whether the concomitant administration of proton pump inhibitors affects duloxetine absorption *[see Warnings and Precautions].* Drugs Metabolized by CYP1A2—*In vitro* drug interaction studies demonstrate that

Drugs Metabolized by CYP1A2—In vitro drug interaction studies demonstrate that duloxetine does not induce CYP1A2 activity. Therefore, an increase in the metabolism of CYP1A2 substrates (e.g., theophylline, caffeine) resulting from induction is not anticipated, although clinical studies of induction have not been performed. Duloxetine is an inhibitor of the CYP1A2 isoform in *in vitro* studies, and in two clinical studies the average (90% confidence interval) increase in theophylline AUC was 7% (1%-15%) and 20% (13%-27%) when co-administered with duloxetine (60 mg twice daily). Drugs Metabolized by CYP2D6—Duloxetine is a moderate inhibitor of CYP2D6. When

Drugs Metabolized by CYP2D6—Duloxetine is a moderate inhibitor of CYP2D6. When duloxetine was administered (at a dose of 60 mg twice daily) in conjunction with a single 50-mg dose of desipramine, a CYP2D6 substrate, the AUC of desipramine increased 3-fold [see Warnings and Precautions].

Drugs Metabolized by CYP2C9—Duloxetine does not inhibit the *in vitro* enzyme activity of CYP2C9. Inhibition of the metabolism of CYP2C9 substrates is therefore not anticipated, although clinical studies have not been performed.

Drugs Metabolized by CYP3A—Results of *in vitro* studies demonstrate that duloxetine does not inhibit or induce CYP3A activity. Therefore, an increase or decrease in the metabolism of CYP3A substrates (e.g., oral contraceptives and other steroidal agents) resulting from induction or inhibition is not anticipated, although clinical studies have not been performed.

Drugs Metabolized by CYP2C19—Results of *in vitro* studies demonstrate that duloxetine does not inhibit CYP2C19 activity at therapeutic concentrations. Inhibition of the metabolism of CYP2C19 substrates is therefore not anticipated, although clinical studies have not been performed.

Monoamine Oxidase Inhibitors—[See Contraindications and Warnings and Precautions.] Switching Patients to or from a Monoamine Oxidase Inhibitor—At least 14 days should elapse between discontinuation of an MAOI and initiation of therapy with Cymbalta. In addition, at least 5 days should be allowed after stopping Cymbalta before starting an MAOI [see Contraindications and Warnings and Precautions].

Serotomergic Drugs—Based on the mechanism of action of SNRIs and SSRIs, including Cymbalta, and the potential for serotonin syndrome, caution is advised when Cymbalta is co-administered with other drugs that may affect the serotonergic neurotransmitter systems, such as triptans, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, tramadol, or St. John's Wort. The concomitant use of Cymbalta with other SSRIs, SNRIs, or tryptophan is not recommended [see Warnings and Precautions].

Triptans—There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of Cymbalta with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases [see Warnings and Precautions].

Alcohol—When Cymbalta and ethanol were administered several hours apart so that peak concentrations of each would coincide, Cymbalta did not increase the impairment of mental and motor skills caused by alcohol. In the Cymbalta clinical trials database, three Cymbalta-treated patients had liver injury as manifested by ALT and total bilirubin elevations, with evidence of obstruction. Substantial intercurrent ethanol use was present in each of these cases, and this may have contributed to the abnormalities seen *[see Warnings and Precautions]*.

CNS Drugs—[See Warnings and Precautions.]

Drugs Highly Bound to Plasma Protein—Because duloxetine is highly bound to plasma protein, administration of Cymbalta to a patient taking another drug that is highly protein bound may cause increased free concentrations of the other drug, potentially resulting in adverse reactions.

USE IN SPECIFIC POPULATIONS: Pregnancy—<u>Teratogenic Effects, Pregnancy Category C</u>—In animal reproduction studies, duloxetine has been shown to have adverse effects on embryo/fetal and postnatal development.

When duloxetine was administered orally to pregnant rats and rabbits during the period of organogenesis, there was no evidence of teratogenicity at doses up to 45 mg/kg/day (7 times the maximum recommended human dose [MRHD, 60 mg/day] and 4 times the human dose of 120 mg/day on a mg/m² basis, in rat; 15 times the MRHD and 7 times the human dose of 120 mg/day on a mg/m² basis in rabbit). However, fetal weights were decreased at this dose, with a no-effect dose of 10 mg/kg/day (2 times the MRHD and ~1 times the human dose of 120 mg/day on a mg/m² basis in rats; 3 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis in rats; 3 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis in rabbits).

When duloxetine was administered orally to pregnant rats throughout gestation and lactation, the survival of pups to 1 day postpartum and pup body weights at birth and during the lactation period were decreased at a dose of 30 mg/kg/day (5 times the MRHD and 2 times the human dose of 120 mg/day on a mg/m² basis); the no-effect dose was 10 mg/kg/day. Furthermore, behaviors consistent with increased reactivity, such as increased startle response to noise and decreased habituation of locomotor activity, were observed in pups following maternal exposure to 30 mg/kg/day. Post-weaning growth and reproductive performance of the progeny were not affected adversely by maternal duloxetine treatment.

There are no adequate and well-controlled studies in pregnant women; therefore, duloxetine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

<u>Nonteratogenic Effects</u>—Neonates exposed to SSRIs or serotonin and norepinephrine reuptake inhibitors (SNRIs), late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These

PV 7213 AMP CYMBALTA® (duloxetine hydrochloride)