

Drugs in Pipeline Hold Promise for H1N1 Flu

BY BRUCE JANCIN

EXPERT ANALYSIS FROM A CONFERENCE ON
PEDIATRIC INFECTIOUS DISEASES

VAIL, COLO. — Much needed help in treating pandemic 2009 H1N1 influenza may be on the way in the form of two promising investigational drugs that could become commercially available within the next several flu seasons.

Favipiravir and laninamivir are in phase III clinical trials abroad, where to date both appear to be performing very well, Dr. Adriana Weinberg said at the meeting sponsored by the Children's Hospital, Denver.

Favipiravir is an oral RNA polymerase inhibitor effective against both influenza A and B as well as other RNA viruses. It is in phase III testing in Japan. Importantly, it has no cross-resistance with the neuraminidase inhibitors or adamantanes.

Laninamivir is a neuraminidase inhibitor administered only by inhalation. However, the drug has an extremely long half-life such that a single inhalation constitutes an entire course of treatment.

Laninamivir is administered only by inhalation. However, the drug has an extremely long half-life such that a single inhalation constitutes an entire course of treatment.

Laninamivir is effective against oseltamivir-resistant isolates. It is in phase III trials in Australia, where it is establishing a very favorable safety profile, according to Dr. Weinberg, professor of medicine, pediatrics, and pathology of the University of Colorado, Denver, and medical director of the clinical virology laboratory at University of Colorado Hospital.

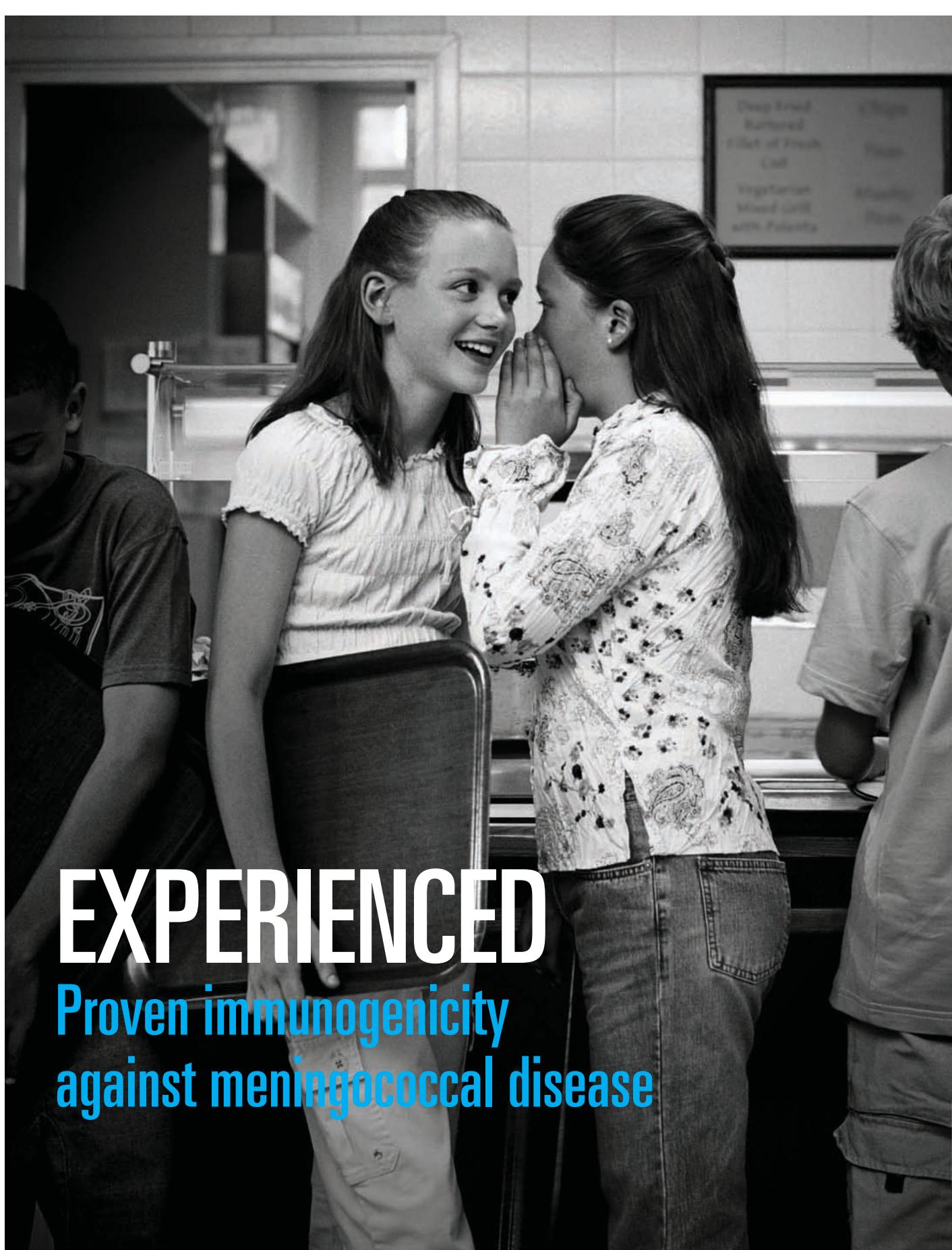
Current treatment options for pandemic H1N1 flu are quite limited, so these two new drugs are badly needed, she added.

More than 90% of H1N1 isolates from the 2009 pandemic were resistant to adamantanes. So basically all that physicians had available early on were the oral neuraminidase inhibitor oseltamivir (Tamiflu) and the inhalation-only formulation of zanamivir (Relenza), another neuraminidase inhibitor.

These were supplemented during the pandemic by intravenous peramivir, a drug that was in phase III trials but was decreed available for use in critically ill patients as a result of an Emergency Use Authorization. The Emergency Use Authorization was terminated in June 2010. Peramivir has a resistance profile and efficacy similar to oseltamivir. Thus, its sole advantage is that it can be given intravenously. The recommended dosing is 6 mg/kg in neonates, 8 mg/kg for infants aged 31-90 days, 10 mg/kg for 91- to 180-day-olds, 12 mg/kg for children aged 181 days through 5 years, 10 mg/kg for 6- to 17-year-olds, and 600 mg for patients aged 18 years and older. The

infusion is given over 30-60 minutes.

Intravenous zanamivir became available on a compassionate use basis during the pandemic. Unlike peramivir, it is effective against oseltamivir-resistant isolates.


Ribavirin is commercially available for indications other than influenza. However, it does have in vitro activity against influenza, and although it's not a very good anti-influenza drug by itself, it may

have a future in combination therapy for severe pandemic H1N1 disease.

Combo therapy with neuraminidase inhibitors, ribavirin, adamantanes, and interferon was widely used for avian influenza A(H5N1), but because of the lack of controls it's hard to draw any conclusions as to whether this resulted in enhanced efficacy. In animal models, two drugs for pandemic H1N1 disease are more effective than one, regardless of the

drugs tested, provided the virus is susceptible to both drugs. Results thus far are conflicting when the virus is resistant, according to Dr. Weinberg.

Oseltamivir performed well last season against pandemic H1N1. When started within 2 days following symptom onset, it reduced mortality by 50%. It also reduced the duration of symptoms. There is some evidence that if the drug is given within the first 3 days, it

reduces duration of viral shedding, which is 14 days without treatment compared with 7 days for seasonal influenza. Oseltamivir did a good job of limiting disease transmission during outbreaks in nursing homes and other closed communities.

Under an Emergency Use Authorization issued during last year's pandemic, oseltamivir became available for the treatment of patients of all ages with H1N1 flu. Recent interim data from a National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group trial suggest the best dose

in infants is 3 mg/kg twice daily. In premature babies, the optimal dose appears to be 1 mg/kg twice daily (J. Infect. Dis. 2010;202:563-6).

In the middle of last year's pandemic, the World Health Organization recommended that the standard 75-mg b.i.d. adult and adolescent dose of oseltamivir could be doubled in severe cases of H1N1 disease, an announcement Dr. Weinberg dismissed as "weirdness that made little sense" since the pharmacokinetics of the drug are linear up to 500 mg/dose.

"Why would you go from 75 mg to 150 and not to 300 mg/dose?" she asked.

Her advice: Consider quadrupling the standard dose in severe cases.

Prophylactic administration of oseltamivir is a common inducer of resistance in immunocompetent patients, which is why the WHO recommends not using the drug for prophylaxis. Resistance also develops quickly in lung transplant recipients.

There was concern that oseltamivir resistance would spread widely through communities, but that didn't prove to be the case. All documented cases have occurred in patients on oseltamivir or in close contacts of patients treated with

the drug, according to Dr. Weinberg.

Two recent animal studies reached dead opposite conclusions regarding the pathogenicity of oseltamivir-resistant H1N1 strains. One study showed the drug-resistant strains were less pathogenic than wild-type virus, whereas the other study found that the drug-resistant and wild-type viruses had similar pathogenicity. Clearly, more work is needed in this area, she noted. ■

Disclosures: Dr. Weinberg disclosed serving as a consultant to MedImmune, Astellas, GlaxoSmithKline, and Merck.

For over 5 years, Menactra vaccine has taken on meningococcal disease in adolescents, wherever they are.¹

- Proven immunogenicity demonstrated in clinical trials²
- Well-established safety in clinical trials in over 36,000 patients, and confirmed in everyday use since 2005^{1,3}
- The ONLY quadrivalent meningococcal conjugate vaccine indicated for patients 2 through 55 years of age
- Real-world experience: The ONLY quadrivalent meningococcal conjugate vaccine with 5 years of use in practices across the country and more than 30 million doses distributed^{1,4}

Important Safety Information

Indication

Menactra vaccine is indicated for active immunization of individuals 2 through 55 years of age for the prevention of invasive meningococcal disease caused by *N meningitidis* serogroups A, C, Y, and W-135. Menactra vaccine is not indicated for the prevention of meningitis caused by other microorganisms or for the prevention of invasive meningococcal disease caused by *N meningitidis* serogroup B.

Safety Information

The most common local and systemic adverse reactions to Menactra vaccine include injection site pain, redness, and induration; headache, fatigue, and malaise. Other adverse reactions may occur. Menactra vaccine is contraindicated in persons with known hypersensitivity to any component of the vaccine or to latex, which is used in the vial stopper. Guillain-Barré syndrome (GBS) has been reported in temporal relationship following administration of Menactra vaccine. Persons previously diagnosed with GBS should not receive Menactra vaccine. Vaccination with Menactra vaccine may not protect all individuals.

Before administering Menactra vaccine, please see brief summary of full Prescribing Information on adjacent page.

^aCPT = Current Procedural Terminology is a registered trademark of the American Medical Association. Menactra vaccine is manufactured and distributed by Sanofi Pasteur Inc.

References: 1. US Food and Drug Administration. January 14, 2005 Approval Letter. <http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm131181.htm>. Accessed May 27, 2010. 2. Keyserling H, Papa T, Koranyi K, et al. Safety, immunogenicity, and immune memory of a novel meningococcal (groups A, C, Y, and W-135) polysaccharide diphtheria toxoid conjugate vaccine (MCV-4) in healthy adolescents. *Arch Pediatr Adolesc Med.* 2005;159:907-913. 3. Sanofi Pasteur Inc. Data on file (Menactra Vaccine Clinical Development Overview), July 9, 2008. MKT19096. 4. Sanofi Pasteur Inc. Data on file (Menactra Vaccine Direct Doses Distributed, 2005-2009), January 2010. MKT19118.

For more information or to place an order, log onto www.vaccineshoppe.com or call 1-800-VACCINE (1-800-822-2463).


sanofi pasteur. Discovery Drive. Swiftwater, Pennsylvania 18370. www.sanofipasteur.us

MKT19750

© 2010 Sanofi Pasteur Inc.

7/10

Printed in USA

sanofi pasteur

The vaccines division of sanofi-aventis Group