Frailty Markers Predicted Post-Op Mortality

BY SHERRY BOSCHERT

INDIAN WELLS, CALIF. — Elderly patients with at least four of six markers of frailty before elective major surgery were significantly more likely to die within 6 months after surgery, a prospective study of 110 subjects showed.

More than half of all operations in the United States are performed on patients older than 65 years. Including six frailty markers in geriatric preoperative assessments can help predict postoperative mortality and the probability of a patient needing transfer into institutional care after discharge, Dr. Thomas N. Robinson and associates reported at the annual meeting of the American Surgical Association.

'Recognition of frailty markers in a preoperative assessment of geriatric patients represents a paradigm shift from the traditional preoperative evaluation

techniques," which typically stratify risk based on a single organ system assessment, said Dr. Robinson of the University of Colorado, Denver.

Dr. Michael E. Zenilman, also commented favorably on the frailty markers. We used to only look at comorbidities, urgency of procedure, and cardiac risk stratification to determine risk. Only recently have we recognized that frailty, disability, and alterations in serum markers

like albumin and hematocrit can affect the outcome," said Dr. Zenilman, professor and chair of surgery at the State University of New York Downstate Medical Center, Brooklyn, N.Y.

The investigators chose 12 of more than 70 frailty markers that have been described in the medical literature to include in assessments within 30 days before elective major surgery at the Denver Veterans Affairs Medical Center. The patients, who underwent general, thoracic, vascular, or urologic surgery, had an average age of 74 years, and 95% were men.

The assessments covered age, cognition as measured by the Mini-Cog Test, the number of falls in the past 6 months, a history of depression, the presence of anemia as reflected by hematocrit, and disability as measured by the Katz Activity of Daily Living Score, which looks for dependence in bathing, grooming, or dressing. The investigators also used three assessments of undernutrition: weight loss of 10 pounds or more in the prior 6 months, body mass index, and albumin level. Three measures assessed comorbidity level: the Charlson Index, the number of outpatient medications being used, and the American Society of Anesthesiologists (ASA) score.

The investigators chose the 12 frailty markers because they could be marked on a dashboard sheet by a nurse taking vital signs. A surgeon looking at the dashboard sheet during a visit would then be able to "risk stratify the patient in an improved fashion," Dr. Robinson said.

All patients survived surgery and postoperative care in the ICU. A total of 15% of patients died within 6 months of undergoing surgery, and 26% required institutionalization in nursing homes or other care institutions upon discharge, Dr. Robinson reported.

The six preoperative frailty markers that were significantly associated with a higher risk of 6-month mortality were:

- ► Cognitive impairment on the Mini-Cog Test. This is a simple and validated way to test for impaired cognition or dementia using a three-item recall test and a clock-drawing test.
- ▶ Lower albumin level. This averaged 2.93 g/dL in patients who died, compared with 3.69 g/dL in patients who survived 6 months after surgery.
- ▶ Increased falls. Patients who died averaged 1.6 falls in the 6 months before surgery, compared with 0.7 falls among survivors.
- ► Lower hematocrit. This was 35% in patients who died and 41% in those alive 6 months after surgery.
- ► Higher Katz disability score. This averaged 3.2 among patients who died and 4.8 among survivors.
- ▶ Greater burden of comorbidities. Patients who died had an average Charlson Index score of 5.1, compared with 3.1 among survivors.

The same six factors were associated with discharge to institutional care.

Dr. Robinson and associates stated that they have no conflicts of interest.

insulin detemir (rDNA origin) injection

Rx ONLY BRIEF SUMMARY. Please see package insert for

INDICATIONS AND USAGE

LEVEMIR is indicated for once- or twice-daily subcutaneous administration for the treatment of adult and pediatric patients with type 1 diabetes mellitus or adult patients with type 2 diabetes mellitus who require basal (long acting) insulin for the control of hyperglycemia.

CONTRAINDICATIONS
LEVEMIR is contraindicated in patients hypersensitive to insulin nir or one of its excipie

WARNINGS

WAKNINGS
Hypoglycemia is the most common adverse effect of insulin therapy, including LEVEMIR. As with all insulins, the timing of hypoglycemia may differ among various insulin formulations.

Glucose monitoring is recommended for all patients with diabetes.

LEVEMIR is not to be used in insulin infusion pumps.

Any change of insulin dose should be made cautiously and only under medical supervision. Changes in insulin strength, timing of dosing, manufacturer, type (e.g., regular, NPH, or insulin analogs), species (animal, human), or method of manufacture (rDNA versus animal-source insulin) may result in the need for a change in dosage. Concomitant oral antidiabetic treatment may need to be adjusted.

PRECAUTIONS

Inadequate dosing or discontinuation of treatment may lead to hyperglycemia and, in patients with type 1 diabetes, diabetic ketoacidosis. The first symptoms of hyperglycemia usually occur gradually over a period of hours or days. They include nausea, vomiting, drowsiness, flushed dry skin, dry mouth, increased urination, thirst and loss of appetite as well as acetone breath. Untreated hyperglycemic events are potentially fatal.

LEVEMIR is not intended for intravenous or intramuscular administration. The prolonged duration of activity of insulin administration. The proionized duration of activity of insuin deternir is dependent on injection into subcutaneous tissue. Intravenous administration of the usual subcutaneous dose could result in severe hypoglycemia. Absorption after intramuscular administration is both faster and more extensive than absorption after subcutaneous administration.

LEVEMIR should not be diluted or mixed with any other insulin preparations (see PRECAUTIONS, Mixing of Insulins)

Insulin may cause sodium retention and edema, particularly if previously poor metabolic control is improved by intensified

As with all insulin preparations, the time course of LEVEMIR action may vary in different individuals or at different times in the same individual and is dependent on site of injection, blood supply, temperature, and physical activity.

Adjustment of dosage of any insulin may be necessary if patients change their physical activity or their usual meal plan.

change their physical activity or their usual meal plan. **Hypoglycemia**As with all insulin preparations, hypoglycemic reactions may be associated with the administration of LEVEMIR. Hypoglycemia is the most common adverse effect of insulins. Early warning symptoms of hypoglycemia may be different or less pronounced under certain conditions, such as long duration of diabetes, diabetic nerve disease, use of medications such as beta-blockers, or intensified diabetes control (see PRECAUTIONS, Drug Interactions). Such situations may result in severe hypoglycemia (and, possibly, loss of consciousness) prior to patients' awareness of hypoglycemia.

The time of occurrence of hypoglycemia depends on the action profile of the insulins used and may, therefore, change when the treatment regimen or timing of dosing is changed. In patients being switched from other intermediate or long-acting insulin preparations to once- or twice-daily LEVEMIR, dosages can be prescribed on a unit-to-unit basis; however, as with all insulin preparations, dose and timing of administration may need to be adjusted to reduce the risk of hypoglycemia.

Renal Impairment
As with other insulins, the requirements for LEVEMIR may need to be adjusted in patients with renal impairment.

Hepatic Impairment
As with other insulins, the requirements for LEVEMIR may need to be adjusted in patients with hepatic impairment.

Injection Site and Allergic Reactions
As with any insulin therapy, lipodystrophy may occur at the injection site and delay insulin absorption. Other injection site reactions with insulin therapy may include redness, pain, itching, hives, swelling, and inflammation. Continuous rotation of the injection site within a given area may help to reduce or prevent these reactions. Reactions usually resolve in a few days to a few

weeks. On rare occasions, injection site reactions may require discontinuation of LEVEMIR.

In some instances, these reactions may be related to factor other than insulin, such as irritants in a skin cleansing agen poor injection technique.

Systemic allergy: Generalized allergy to insulin, which is less Systemic altergy: Generalized altergy to insulin, which is less common but potentially more serious, may cause rash (including pruritus) over the whole body, shortness of breath, wheezing, reduction in blood pressure, rapid pulse, or sweating. Severe cases of generalized allergy, including anaphylactic reaction, may be life-threatening.

Intercurrent Conditions

Insulin requirements may be altered during intercurrent conditions such as illness, emotional disturbances, or other

stresses.

Information for Patients
LEVEMIR must only be used if the solution appears clear and colorless with no visible particles. Patients should be informed about potential risks and advantages of LEVEMIR therapy, including the possible side effects. Patients should be offered continued education and advice on insulin therapies, injection technique, life-style management, regular glucose monitoring, periodic glycosylated hemoglobin testing, recognition and management of hypo- and hyperglycemia, adherence to meal planning, complications of insulin therapy, timing of dosage, instruction for use of injection devices and proper storage of insulin. Patients should be informed that frequent, patient-performed blood glucose measurements are needed to achieve effective glycemic control to avoid both hyperglycemia and hypoglycemia. Patients must be instructed on handling of special situations such as intercurrent conditions (Illness, stress, or emotional disturbances), an inadequate or skipped insulin dose, inadequate food intake, or skipped meals. Refer patients to the inadequate food intake, or skipped meals. Refer patients to the LEVEMIR "Patient Information" circular for additional information.

As with all patients who have diabetes, the ability to concentrate and/or react may be impaired as a result of hypoglycemia or hyperglycemia

Patients with diabetes should be advised to inform their health care professional if they are pregnant or are contemplating pregnancy (see PRECAUTIONS, Pregnancy).

Laboratory TestsAs with all insulin therapy, the therapeutic response to LEVEMIR should be monitored by periodic blood glucose tests. Periodic measurement of HbA $_{\rm t}$ is recommended for the monitoring of long-term glycemic control.

Drug Interactions

A number of substances affect glucose metabolism and may require insulin dose adjustment and particularly close monitoring.

The following are examples of substances that may reduce the blood-glucose-lowering effect of insulin: corticosteroids, danazol, diuretics, sympathomimetic agents (e.g., epinephrine, albuterol, terbutaline), isoniazid, phenothiazine derivatives, somatropin, thyroid hormones, estrogens, progestogens (e.g., in oral contraceptives).

The following are examples of substances that may increase the blood-glucose-lowering effect of insulin and susceptibility to hypoglycemia: oral antidiabetic drugs, ACE inhibitors, disopyramide, fibrates, fluoxetine, MAO inhibitors, propoxyphene, salicylates, somatostatin analog (e.g., octreotide), and sulfonamide antibiotics.

Beta-blockers, clonidine, lithium salts, and alcohol may either potentiate or weaken the blood-glucose-lowering effect of insulin. Pentamidine may cause hypoglycemia, which may sometimes be followed by hyperglycemia. In addition, under the influence of sympatholytic medicinal products such as beta-blockers, clonidine, guanethidine, and reserpine, the signs of hypoglycemia may be reduced or absent.

The results of *in-vitro* and *in-vivo* protein binding studies demonstrate that there is no clinically relevant interaction between insulin detemir and fatty acids or other protein bound drugs.

Mixing of Insulins
If LEVEMIR is mixed with other insulin preparations, the profile Mixing LEVEMIR with insulin aspart, a rapid acting insulin analog, resulted in about 40% reduction in AUC (0.7h) and for insulin aspart compared to separate injections wh ratio of insulin aspart to LEVEMIR was less than 50%.

LEVEMIR should NOT be mixed or diluted with any other insulin preparations.

Carcinogenicity, Mutagenicity, Impairment of Fertility
Standard 2-year carcinogenicity studies in animals have not
been performed. Insulin determit tested negative for genotoxic
potential in the *in-vitro* reverse mutation study in bacteria,
human peripheral blood lymphocyte chromosome aberration
test, and the *in-vivo* mouse micronucleus test.

Pregnancy: Teratogenic Effects: Pregnancy Category C In a fertility and embryonic development study, insulin detem

Pregnancy: Teratogenic Effects: Pregnancy Category C in a fertility and embryonic development study, insulin detemir was administered to female rats before mating, during mating, and throughout pregnancy at doses up to 300 nmol/kg/day (3 times the recommended human dose, based on plasma Area Under the Curve (AUC) ratio). Doses of 150 and 300 nmol/kg/day produced numbers of litters with visceral anomalies. Doses up to 900 nmol/kg/day (approximately 135 times the recommended human dose based on AUC ratio) were given to rabbits during organogenesis. Drug-dose related increases in the incidence of fetuses with gall bladder abnormalities such as small, bilobed, bifurcated and missing gall bladders were observed at a dose of 900 nmol/kg/day. The rat and rabbit embryofetal development studies that included concurrent human insulin control groups

indicated that insulin detemir and human insulin had similar effects regarding embryotoxicity and teratogenicity.

Nursing mothersIt is unknown whether LEVEMIR is excreted in significant amounts in human milk. For this reason, caution should be exercised when LEVEMIR is administered to a nursing mother. Patients with diabetes who are lactating may require adjustments in insulin dose, meal plan, or both

Pediatric useIn a controlled clinical study, HbA_{1c} concentrations and rates of hypoglycemia were similar among patients treated with LEVEMIR and patients treated with NPH human insulin.

Geriatric use

Geriatric use

Of the total number of subjects in intermediate and long-term clinical studies of LEVEMIR, 85 (type 1 studies) and 363 (type 2 studies) were 65 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. In elderly patients with diabetes, the initial dosing, dose increments, and maintenance dosage should be conservative to avoid hypoglycemic reactions. Hypoglycemia may be difficult to recognize in the elderly.

ADVERSE REACTIONS

Adverse events commonly associated with human insulin therapy include the following:

Body as Whole: allergic reactions (see PRECAUTIONS, Allergy). **Skin and Appendages:** lipodystrophy, pruritus, rash. Mild injection site reactions occurred more frequently with LEVEMIR than with NPH human insulin and usually resolved in a few days to a few weeks (see PRECAUTIONS, Allergy).

Hypoglycemia: (see WARNINGS and PRECAUTIONS).

In trials of up to 6 months duration in patients with type 1 and type 2 diabetes, the incidence of severe hypoglycenia with type 2 diabetes, the mediance of severe 1,955,55.

LEVEMIR was comparable to the incidence with NPH, and, as expected, greater overall in patients with type 1 diabetes (Table 4).

Weight gain:
In trials of up to 6 months duration in patients with type 1
and type 2 diabetes, LEVEMIR was associated with somewhat
less weight gain than NPH (Table 4). Whether these observed
differences represent true differences in the effects of LEVEMIR
and NPH insulin is not known, since these trials were not blinded and the protocols (e.g., diet and exercise instructions and monitoring) were not specifically directed at exploring hypotheses related to weight effects of the treatments compared. The clinical significance of the observed differences has not been established.

Safety Information on Clinical Studies

			Weight (kg)		(events/subject/month)	
	Treatment	# of subjects	Baseline	End of treatment	Major*	Minor**
Type 1						
Study A	LEVEMIR	N=276	75.0	75.1	0.045	2.184
	NPH	N=133	75.7	76.4	0.035	3.063
Study C	LEVEMIR	N=492	76.5	76.3	0.029	2.397
	NPH	N=257	76.1	76.5	0.027	2.564
Study D	LEVEMIR	N=232	N/A	N/A	0.076	2.677
Pediatric	NPH	N=115	N/A	N/A	0.083	3.203
Type 2						
Study E	LEVEMIR	N=237	82.7	83.7	0.001	0.306
	NPH	N=239	82.4	85.2	0.006	0.595
Study F	LEVEMIR	N=195	81.8	82.3	0.003	0.193
	NPH	N=200	79.6	80.9	0.006	0.235

Major = requires assistance of another individual because of neurologic

impairment
**Minor = plasma glucose <56 mg/dl, subject able to deal with the episode him/herself</p>

OVERDOSAGE

OVERDOSAGE
Hypoglycemia may occur as a result of an excess of insulin relative to food intake, energy expenditure, or both. Mild episodes of hypoglycemia usually can be treated with oral glucose. Adjustments in drug dosage, meal patterns, or exercise may be needed. More severe episodes with coma, seizure, or neurologic impairment may be treated with intramuscular/ subcutaneous glucagon or concentrated intravenous glucose. After apparent clinical recovery from hypoglycemia, continued observation and additional carbohydrate intake may be necessary to avoid reoccurrence of hypoglycemia.

More detailed information is available on request. Rx only

Manufactured for Novo Nordisk Inc., Princeton, NJ 08540

Manufactured by Novo Nordisk A/S, 2880 Bagsvaerd, Denmark www.novonordisk-us.com

Levemir® and Novo Nordisk® are trademarks of Novo Nordisk A/S. © 2006 Novo Nordisk Inc.

