Obstetrics

Inconsolable Infants Linked to Maternal Depression

BY DOUG BRUNK

San Diego Bureau

SAN DIEGO — Results from the first population-based study of its kind have found that about one in three mothers of inconsolable, crying infants reported having postpartum depressive symptoms, Pamela C. High, M.D., said at the annual meeting of the Society for Developmental and Behavioral Pediatrics.

Dr. High and her associates analyzed

data from Rhode Island's Pregnancy Risk Assessment Monitoring System (PRAMS) that was weighted to represent all births that occurred in the state in 2002 and 2003. Sponsored by the Centers for Disease Control and Prevention, PRAMS is an ongoing state-specific population-based survey that identifies and monitors selected maternal behaviors and experiences before, during, and after pregnancy. Rhode Island is one of 32 states that has the system.

The investigators mailed a survey to

4,214 mothers that included a question about their infants' consolability as well as a question about maternal depressive symptoms, said Dr. High, director of developmental and behavioral pediatrics at Rhode Island Hospital/Hasbro Children's Hospital, Providence.

Of the 4,214 mothers, 2,947 returned questionnaires, for a response rate of 70%.

Nearly 10% of respondents were in their

teens, almost half in their 20s and an additional 27% were aged 30-34 years. The majority of them (87%) were white, while 8% were black. The rest were of Hispanic, Asian, or American Indian background.

The mean infant age was 16 weeks and nearly half were males.

Overall, mothers identified 8.3% of the infants as being "somewhat difficult" or "very difficult" to console. Infants who weighed less than 2,500 g at birth were reported to be more difficult to console compared with heavier newborns (11.2% vs. 8.1%, respectively).

Among the respondents, 7.7% of whites, 9.4% of blacks, and 17.1% of those from other racial backgrounds said they had infants who were difficult to console.

No significant differences were seen with maternal age, Hispanic ethnicity, maternal education, marital status, household income, parity, or breast-feeding.

In the assessment, 19.2% of mothers reported that in the months after delivery, they felt "moderately depressed," "very

Association between maternal depressive symptoms and inconsolable infants is called 'robust' but was measured by a single question

in the survey.

depressed," or "very depressed and had to get help."

Higher levels of postpartum depression were reported mothers by who had not completed high school or who only had a high school education. Other risk factors included

being unmarried, having an annual household income of less than \$40,000, and being on public health insurance.

Mothers of infants who weighed less than 2,500 g at birth reported more depression than did those with heavier newborns (29.2% vs. 18.4%), while mothers with unintended pregnancies reported more depression than did those with planned pregnancies (22.8% vs. 16.8%).

Maternal age, race, ethnicity, and parity did not predict depression in these mothers. Slightly more than one-third of mothers with inconsolable infants (34.7%) also reported postpartum depressive symptoms, compared with 17.4% of mothers with infants described as more easily consoled. Physicians, then, should consider screening for postpartum depression when a new mother comes in with an inconsolable infant, the researchers suggested.

Logistic regression analysis, adjusted for socioeconomic factors, revealed that mothers with postpartum depressive symptoms were 2.59 times more likely to report infant inconsolability than were mothers who did not report postpartum depressive symptoms.

Dr. High called the association between maternal depression and infant inconsolability "robust," but noted that a limitation of the study includes the fact that infant inconsolability and maternal depression were measured by a single question. "Also, the population sampled is not necessarily representative of the rest of the United States," she said.

LunestaTM (eszopiclone)© 1, 2 ANO 3 MG TABLETS

WARNINGS

Because sleep disturbances may be the presenting manifestation of a physical and/or psychiatric disorder, symptomatic treatment of insomnia should be initiated only after a careful evaluation of the patient. The failure of insomnia to emit after 7 to 10 days of treatment may indicate the presence of a primary psychiatric and/or medical illness that should be evaluated. Worsening of insomnia or the emergence of new thinking or behavior abnormalism may be the consequence of an unrecognized psychiatric or physical disorder. Such findings have emerged during the course of treatment with sedative/hypontic drugs, including LUNESTA. Because some of the important adverse effects of LUNESTA appear to be dose-related, it is important to use the lowest possible effective dose, sepecially in the elderly (see DOSAGE AND ADMINIS-TRATION in the Full Prescribing Information).

TRATION in the Full Prescribing Information).

A variety of abnormal thinking and behavior changes have been reported to occur in association with the use of sedative/hypnotics. Some of these changes may be characterized by decreased inhibition (e.g., aggressiveness and extroversion that seem out of character), similar to effects produced by alcohol and other CNS depressants. Other reported behavioral changes have included bizarre behavior, agitation, hallucinations, and depersonalization. Annesia and other neuropsychiatric symptoms may occur unpredictably. In primarily depressed patients, worsening of depression, including suicidal thinking, has been reported in association with the use of sedative/hypnotics.

withdrawal from other CNS-depressant drugs (see PRUG ABUSE AND DEFENDENCE). LUNESTA, like other hypnotics, has CNS-depressant effects. Because of the rapid onset of action, LUNESTA should only be ingested immediately prior to going to bed or after the patient has gone to bed and has experienced difficulty falling asleep. Patients receiving LUNESTA should be cautioned against engaging in hazardous occupations requiring complete mental alertness or motor coordination (e.g., operating machinery or driving a motor vehicle) after ingesting the drug, and be cautioned about potential impairment of the performance of such activities on the day following ingestion of LUNESTA. LUNESTA, like other hypnotics, may produce additive CNS-depressant effects when coadministered with other psychotropic medications, anticionarius, antihistamines, ethanol, and other drugs that themselves produce CNS depression. LUNESTA should not be taken with alcohol. Dose adjustment may be necessary when LUNESTA is administered with other CNS-depressant agents, because of the potentially additive effects.

General
Timing Of Drug Administration: LUNESTA should be taken immediately before bedtime.
Taking a sedative/hypnotic while still up and about may result in short-term memory impairment, hallucinations, impaired coordination, dizziness, and lightheadedness.

Vse In The Elderly And/Or Debilitated Patients: Impaired motor and/or cognitive performance after repeated exposure or unusual sensitivity to sedative/hypnotic drugs is a concern in the treatment of elderly and/or debilitated patients. The recommended starting dose of LUNESTA for these patients is 1 mg (see DOSAGE AND ANDINISTRATION in the Full Prescribing Information).

Limit In Debiance With Concemitant Illness: Clinical experience with eszopicione in

Use In Patients With Concomitant Illness: Clinical experience with eszopicione in patients with concomitant Illness is limited. Eszopicione should be used with caution in patients with diseases or conditions that could affect metabolism or hemodynamic

A study in healthy volunteers did not reveal respiratory-depressant effects at doses 25-fold higher (7 mg) than the recommended dose of escopicione. Caution is advised, however, if LUNESTA is prescribed to patients with compromised respiratory function. The dose of LUNESTA should be reduced to 1 mg in patients with severe hepatic impairment, because systemic exposure is doubled in such subjects. No dose adjustment appears necessary for subjects with mild or moderate hepatic impairment, both of the subjects with any degree of renal impairment, since less than 10% of escopicione is excreted unchanged in the urine. The dose of LUNESTA should be reduced in patients who are administered potent inhibitors of CYPSA4, such as ketoconazole, while taking LUNESTA. Downward dose adjustment is also recommended when LUNESTA is administered with apents having known CNS-depressant effects.

ing known CNS-depressant effects.

Wes In Patients With Depression: Sedative/hypnotic drugs should be administered with caution to patients exhibiting signs and symptoms of depression. Suicidal tendencies may be present in such patients, and protective measures may be required. Intentional overdose is more common in this group of patients; therefore, the least amount of drug that is feasible should be prescribed for the patient at any one time. Information For Patients: Patient information is printed in the complete prescribing

Drug interactions

Ethanot: An additive effect on psychomotor performance was seen with coadministration of eszopiclone and ethanol 0.70 g/kg for up to 4 hours after ethanol administration of eszopiclone and ethanol 0.70 g/kg for up to 4 hours after ethanol administration.

Paroxetine: Coadministration of single doses of eszopiclone 3 mg and paroxetine

20 mg daily for 7 days produced no pharmacokinetic or pharmacodynamic interaction.

Lorazepam: Coadministration of single doses of eszopiclone 3 mg and lorazepam

2 mg did not have clinically relevant effects on the pharmacodynamics or pharmacokinetics of either drug.

kinetics of either drug.

**Obarzapine: Coadministration of eszopicione 3 mg and olanzapine 10 mg produced a decrease in DSST scores. The interaction was pharmacodynamic; there was no alteration in the pharmacokinetics of either drug.

**Drugs That Inhibit CVPSA4 (Reconazole): CVPSA4 is a major metabolic pathway for elimination of eszopicione. The AUC of eszopicione was increased 2.2-fold by coadministration of ekstoonazole, a potent inhibitor of CVPSA4. 40 mg daily for 5 days.

**C_{max} and t_{1/2} were increased 1.4-fold and 1.3-fold, respectively. Other strong inhibitors of CVPSA4 (e.g., tiraconazole, clarithromycin, nefazodone, troleandomycin, ritonavir, nefinavir) vould be expected to behave similation.

**Drugs That Induce CVPSA44 (Rifampicin): Racemic zopicione exposure was decreased 80% by concomitant use of ritampicin): Racemic ropicione exposure was

of CVP3AÄ (e.g., Iraconazole, clarithromycin, nefazodone, troleandomycin, ritonavir, nefilinavir) would be expected to behave similarly.

Drugs That Induce CVP3A4 (Ritampicin): Racemic zopicione exposure was decreased 80% by concomitant use of ritampicin, a potent inducer of CVP3A4. A similar effect would be expected with escopicione.

Drugs Highth Bound To Plasma Protein: Eszopicione is not highly bound to plasma proteins (52-59% bound); therefore, the disposition of eszopicione is not expected to be sensitive to alterations in protein binding. Administration of eszopicione 3 mg to a patient taking another drug that is highly protein-bound would not be expected to cause an alteration in the free concentration of either drug.

Drugs With A Narrow Therapeutic Index
Digoxin: A single dose of eszopicione 3 mg did not affect the pharmacokinetics of digoxin measured at steady state following dosing of 0.5 mg twice daily for one day and 0.25 mg daily for the next 6 days.

Warfam: Eszopicione 3 mg administered daily for 5 days did not affect the pharmacokinetics of (R)- or (S)-varfam, nor were there any changes in the pharmacodynamic profile (prothrombin time) holowing a single 25-mg oral dose of warfamin.

Carcinogenesis, Mutagenesis, Impairment of Fertility
Carcinogenesis: In a carcinogenicity study in finis study (16 mg/kg/day) are estimated to be 80 (females) and 20 (males) times those in humans receiving the maximum recommended human dose (MRHD). However, in a carcinogenicity study in

Sprague-Dawley rats in which racemic zopicione was given in the diet, and in which plasma levels of eszopicione were reached that were greater than those reached in the above study of eszopicione, an increase in mammary gland adenocarcinomas in males were seen at the highest dose of 100 mg/kg/day, Plasma levels of eszopicione at this dose are estimated to be 150 (females) and 70 (males) times those in humans receiving the MRHD. The mechanism for the increase in mammary adenocarcinomas is unknown. The increase in thyroid tumors is thought to be due to increased levels of TSH secondary to increased metabolism of circulating thyroid hormones, a mechanism that is not considered to be relevant to humans.

In a carcinogenicity study in B6C3Ff mice in which racemic zopiclone was given in the diet, an increase in pulmonary carcinomas and carcinomas plus adenomas in females and an increase in skin fibromas and sarcomas in males were seen at the highest dose of 100 mg/kg/day. Plasma levels of eszopiclone at this dose are estimated to be 8 (females) and 20 (males) times those in humans receiving the MRHD. The skin tumors were due to skin lesions induced by aggressive behavior, a mechanism tat is not relevant to humans. A carcinogenicity study was also performed in which CD-1 mice were given eszopiclone at doses up to 100 mg/kg/day by oral gavague; although this study did not reach a maximum tolerated dose, and was thus inadequate for overall assessment of carcinogenic potential, no increases in either pulmonary or skin tumors were seen at doses producing plasma levels of eszopiclone estimated to be 90 times those in humans receiving the MRHD—i.e., 12 times the exposure in the racemate study.

Eszopiclone did not increase tumors in a 653 transgenic mouse bioassay at oral

12 times the exposure in the racemate study. Exceptione did not increase tumors in a p53 transgenic mouse bioassay at oral doses up to 300 mg/kg/day. Mutagenesis: Eszopicione was positive in the mouse lymphoma chromosomal aberration assay and produced an equivocal response in the Chinese hamster ovary cell chromosomal aberration assay. It was not mutagenic or clastogenic in the bacterial Ames gene mutation assay, in an unscheduled DNA synthesis assay, or in an in vivo mouse bone marrow micronucleus assay.

(S)-N-desmethyl zopicione, a metabolite of eszopicione, was positive in the Chinese hamsler ovary cell and human lymphocyte chromosomal aberration assays. It was negative in the bacterial Ames mutation assay, in an in vitro *P-postlabeling DNA adduct assay, and in an in vivo mouse bone marrow chromosomal aberration and micronucleus assay.

Impairment Of Fartility: Eszopicione was given by oral gavage to male rats at doses up to 45 mg/kg/day from 2 weeks premating through mating and to female rats at doses up to 180 mg/kg/day from 2 weeks premating through day 7 of pregnancy, and additional study was performed in which only females were treated, up to 80 mg/kg/day. Eszopicione decreased fertility, probably because of effects in both males and females, with no females becoming pregnant when both males and females were treated with the highest dose; the no-effect dose in both sexes was 5 mg/kg (16 times the MRHD on a mg/m² basis). Other effects included increases for mg/kg), and decreases in sperm number and motility and increases in morphologically abnormal sperm (no-effect dose 55 mg/kg).

Pregnancy

phologically abnormal sperm (no-effect dose 5 mg/kg).

Pregnancy Category C: Eszopicione administered by oral gavage to pregnant rats and rabbits during the period of organogenesis showed no evidence of teratogenicity up to the highest doses tested (250 and 16 mg/kg/day in rats and rabbits, respectively; these doses are 800 and 100 times, respectively, the maximum recommended human dose [MRHD] on a mg/m² basis.) In the rat, slight reductions in fetal weight and evidence of developmental delay were seen at maternally toxic doses of 125 and 150 mg/kg/day, but not 46.25 mg/kg/day (200 times the MRHD on a mg/m² basis). Eszopicione was also administered by oral gavage to pregnant rats throughout the pregnancy and lactation periods at doses of up to 180 mg/kg/day. Increased post-implantation loss, decreased postnatal pup weights and survival, and increased pup startle response were seen at all doses; the lowest dose tested, 60 mg/kg/day, is 200 times the MRHD on a mg/m² basis. These doses did not produce significant maternal toxicity. Eszopicione had no effects on other behavioral measures or reproductive function in the offspriod and well-controlled studies of eszonicione in premant women.

function in the offspring.

There are no adequate and well-controlled studies of eszopiclone in pregnant women Eszopiclone should be used during pregnancy only if the potential benefit justfies the potential risk to the letus.

Labor And Delivery: LUNESTA has no established use in labor and delivery.

Nursing Mothers: It is not known whether LUNESTA is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when LUNESTA is administered to a nursing woman.

Pediatric Use: Safety and effectiveness of eszopiclone in children below the age of 18 have not been established.

have not been established.

Geriatric Use: A total of 287 subjects in double-blind, parallel-group, placebo-controlled clinical trials who received eszopiclone were 65 to 86 years of age. The overall pattern of adverse events for elderly subjects (median age = 71 years) in 2-week studies with nighttime dosing of 2 mg eszopiclone was not different from that seen in younger adults. LUNESTA 2 mg exhibited significant reduction in sleep latency and improvement in sleep maintenance in the elderly population.

improvement in sleep maintenance in the elderly population.

ADVERSE REACTIONS

The premarketing development program for LUNESTA included eszopiclone exposures in patients and/or normal subjects from two different groups of studies: approximately 400 normal subjects in clinical pharmacology/pharmacokinetic studies, and approximately 1550 patients in placebo-controlled clinical effectiveness studies, corresponding to approximately 263 patient-exposure years. The conditions and duration of treatment with LUNESTA varied greatly and included (in overlapping categories) open-label and double-blind phases of studies, inpatients and outpatients, and short-term and longer-term exposure. Adverse reactions were assessed by collecting adverse events, results of physical examinations, vital signs, weights, laboratory analyses, and ECGs.

weights, laboratory analyses, and ECGs.

Adverse events during exposure were obtained primarily by general inquiry and recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of events into a smaller number of standardized event categories. In the tabulations that follow, COSTART terminology has been used to classify reported adverse events. The stated frequencies of adverse events represent the proportion of individuals who experienced, at least once, a treatment-emergenet adverse event of the type listed. An event was considered treatment-emergent if in Cocurred for the first time or worsened while the patient was receiving therapy following baseline evaluation.

Adverse Findings Observed in Placebo-Controlled Trials

Adverse Event Resulting in Discontinuation of Treatment. In placebo-controlled,

resulted in discontinuation occurred at a rate of greater than 2%.

Adverse Events Observed at an Incidence of ≥2% in Controlled Trials. The following lists the incidence (% placebo, 2 mg, 3 mg, respectively) of treatment-emergent adverse events from a Phase 3 placebo-controlled study of LUNESTA at doses of 2 or 3 mg in non-elderly adults. Treatment duration in this trial was 44 days. Data are limited to adverse events that occurred in 2% or more of patients treated with LUNESTA and gn (n=104) or 3 mg (n=105) in which the incidence in patients treated with LUNESTA as greater than the incidence in placebo-treated patients (n=99).¹
Body as a whole; headache (13%, 21%, 17%), viral infection (1%, 3%, 3%, 5%), logestive system; dry morth (3%, 5%, 7%, 9%), spepsia (14%, 4%, 5%), navases (15%, 5%, 7%), halticolations (0%, 0%, 3%), depression (0%, 4%, 10%, 80%), edgestive system; infection (3%, 5%, 10%, 8%, 10%, 80%), edgestive system; infection (3%, 5%, 10%, 8%, 10%, 80%, 10%, 80%), edgestive system; infection (3%, 5%, 10%, 8%, 10%, 80%), edgestive system; infection (3%, 5%, 10%, 80%, 10%, 80%), edgestive system; infection (3%, 5%, 10%, 80%), edgestive system; infection (3%, 5%, 10%, 3%, 40%), 10%, 80%,

Gender-specific adverse event in females *Gender-specific adverse event in males

Events for which the LUNESTA incidence was equal to or less than placebo are not listed, but included the following: abnormal dreams, accidental injury, back pain, diarrhea, flu syndrome, myalgia, pain, pharyngitis, and rhinitis.

Adverse events that suggest a dose-response relationship in adults include viral infection, dry mouth, dizziness, hallucinations, infection, rash, and unpleasant taste, with this relationship clearest for unpleasant taste.

The following lists the incidence (% placebo, 2 mg, 3 mg, respectively) of treatment-emergent adverse events from combined Phase 3 placebo-controlled studies of LUNESTA at doses of 1 or 2 mg in elderly adults (ages 65-86). Treatment duration in these trials was 14 days. Data are limited to events that occurred in 2% or more of patients treated with LUNESTA 1 mg (n=72) or 2 mg (n=215) in which the incidence in patients treated with LUNESTA was greater than the incidence in placebo-created patients.

patients.¹

Body as a whole; accidental injury (1%, 0%, 3%), headache (14%, 15%, 13%), pain (2%, 4%, 5%), Digestive system; diarrhea (2%, 4%, 2%), dry mouth (2%, 3%, 7%), dyspepsia (2%, 6%, 2%), througs system; abnormal dreams (0%, 3%, 1%), dizziness (2%, 1%, 6%), nervolusness (1%, 0%, 2%), neuralgia (2%, 3%, 0%), Simple (2%, 4%, 1%), dizziness (2%, 1%, 6%), nervolusness (1%, 0%, 2%), neuralgia (2%, 3%, 0%), Simple (2%, 1%), dizziness (2%, 1%, 4%), nervolusness (1%, 0%, 2%), neuralgia (2%, 3%, 0%).

*Events for which the LUNESTA incidence was equal to or less than placebo are not listed, but included the following: abdominal pain, asthenia, nausea, rash, and somnolence.

Tevents for which the LUNESTA incidence was equal to or less than placebo are not listed, but included the following: abdominal pain, asthenia, nausea, rash, and sommolence.

Adverse events that suggest a dose-response relationship in elderly adults include and power and the pain, dry mouth, and unpleasant taste, with this relationship again clearest for unpleasant taste. These figures cannot be used to predict the incidence of adverse events in the course of usual medical practice because palient characteristics and other factors may differ from those that prevailed in the clinical trials. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatments, uses, and investigators.

The cited figures, however, do provide the prescribing physician with some basis for estimating the relative contributions of drug and non-drug factors to the adverse event incidence rate in the population studied.

Other Events Observed During The Premarketing Evaluation Of LUNESTA. Following is a list of modified COSTART terms that reflect treatment-emergent adverse events as defined in the introduction to the ADVERSE REACTIONS section and reported by approximately 1550 subjects treated with LUNESTA at doses in the range of 1 to 3.5 mg/day during Phase 2 and 3 clinical trials throughout the United States and Canada. All reported events are included except those already listed here or listed elsewhere in labeling, minor events common in the general population, and events unlikely to be drug-related. Although the events reported occurred during treatment with LUNESTA, they were not necessarily caused by it.

Events are listed in order of decreasing frequency according to the following definitions: frequent adverse events are those that occurred in lewer than 1/100 patients; infrequent adverse events are those that occurred in lewer than 1/100 patients; bridge dema.

Infrequent: acne, agitation, allergic reaction, alopecia, amenorrhea, anemia, anorexia, apathy,

No development of tolerance to any parameter of sleep measurement was observed over six months. Tolerance to the efficacy of LUNESTA 3 mg was assessed by 4-week objective and 6-week subjective measurements of time to sleep onset and sleep main-tenance for LUNESTA in a placebo-controlled 44-day study, and by subjective assess-ments of time to sleep onset and WASO in a placebo-controlled study for 6 months.

onen associated with overtoose with other Chs-depressant agents. Recommended Treatment General symptomatic and supportive measures should be used along with immediate gastric lavage where appropriate. Intravenous fluids should be administered as needed. Flumazenil may be useful. As in all cases of drug overdose, respiration, pulse, blood pressure, and other appropriate signs should be monitored and general supportive measures employed. Hypotension and CNS depression should be monitored and treated by appropriate medical intervention. The value of dialysis in the treatment of overdosage has not been determined.

Poison Control Center: As with the management of all overdosage, the possibility of multiple drug ingestion should be considered. The physician may wish to consider contacting a poison control center for up-to-date information on the management of hypnotic drug product overdosage.

SEPRACOR 2005 SEPRACOR INC., MARLBOROUGH, MA 01752