FDA, European Drug Agencies Extend Cooperation

BY JONATHAN GARDNER

Contributing Writer

.S. and European drug regulators have announced "intensified" information sharing and dialogue aimed at increasing cooperation in drug approval and surveillance in the world's two largest pharmaceutical markets.

At a March review meeting in Brussels, representatives from the Food and Drug Administration, the European Medicines Agency, and the European Commission judged as a success the implementation of a confidentiality agreement that has enabled greater transatlantic information sharing and dialogue on pharmaceutical regulations protecting 753 million people in 26 countries.

The three agencies hope to strengthen joint activities on vaccines in preparation for potential pandemic flu outbreaks, as well as cancer, children's, and orphan drugs, and pharmacogenomics. Future activities will address counterfeit medicines.

The original agreement, signed in September 2003, paved the way for quarterly information exchanges on new drug applications, regulatory guidance, and inspections of manufacturing plants, which began in 2004. The agreement also authorized ad hoc exchanges of information on drug safety and public health, including advance notice of significant regulatory actions such as pulling drugs from the market. Such an exchange prevents other agencies from issuing contradictory advice when one agency takes significant regulatory action.

The ad hoc exchanges also have enabled 'parallel" scientific guidance for drug applicants seeking the advice of the three agencies on how to proceed with research at such milestones as the conclusion of clinical trials. As part of the initial confidentiality arrangement a 1-year pilot project was initiated in 2005. The three agencies agreed to extend the pilot project, although the document released by the agencies did not say how long it would be extended. ■

Brought to you by sanofi aventis

THE ECS IMPACTS THE METABOLISM OF LIPIDS AND GLUCOSE ¹⁻³		ECS overactivity may be associated with the development of cardiometabolic risk factors including: Low HDL cholesterol — Elevated fasting glucose — High triglycerides — Insulin resistance — High waist circumference
	HELPS REGULATE OGIC PROCESSES ¹⁻⁴	 The ECS consists of signaling molecules and their receptors, including the cannabinoid receptor CB₁² Endocannabinoids bind to CB₁ receptors and trigger events that may have a negative impact on lipid levels and insulin sensitivity¹ CB₁ receptors are located in sites such as muscle, the liver, the brain, and adipose tissue^{1,2,4-6}
	RESEARCH CONTINUES TO NVESTIGATE THE ROLE OF CB ₁ RECEPTORS IN MUSCLE*	Reduced glucose uptake has been observed in isolated skeletal muscle of genetically obese, insulin-resistant animals
	ENDOCANNABINOIDS TARGET FATTY ACID PRODUCTION IN THE LIVER ³	May contribute to dyslipidemia and insulin resistance ^{3,7}
	PRESENT IN MULTIPLE AREAS OF THE BRAIN ²	Hypothalamus integrates signals from adipose tissue and other peripheral tissues ^{8,9}
	ADIPOSE TISSUE—MORE THAN SIMPLY A FAT STORAGE DEPOT	 Produces factors active in the metabolism of lipids and glucose¹⁰ Low levels of adiponectin negatively affect glucose and free fatty acids^{1,10}
EXPLORING THE EFFECTS OF THE ECS		This newly discovered physiologic system provides new opportunities for understanding cardiometabolic risk

^{*}Data from animal model only.

1. Bensaid M, Gary-Bobo M, Esclangon A, et al. The cannabinoid CB₁ receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. *Mol Pharmacol.* 2003;63:908-914. **2.** Harrold JA, Williams G. The cannabinoid system: a role in both the homeostatic and hedonic control of eating? *Br J Nutr.* 2003;90:729-734. **3.** Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endocannabinoid activation at hepatic CB₁ receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. *J Clin Invest.* 2005;115:1298-1305. **4.** Domenicali M, Ros J, Fernández-Varo G, et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. *Gut.* 2005;54:522-527. **5.** Rhee M-H, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. *J Neurochem.* 1998;71:1525-1534.

6. Upham BL, Rummel AM, Carbone JM, et al. Cannabinoids inhibit gap junctional intercellular communication and activate ERK in a rat liver epithelial cell line.

Int J Cancer. 2003;104:12-18. 7. Flier JS, Maratos-Flier E. Obesity. In: Kasper DL, Braunwald E, Fauci AS, et al, eds. Harrison's Principles of Internal Medicine. 16th ed. New York, NY: McGraw-Hill; 2005:chap 64. Available at: http://www.accessmedicine.com/content.aspx?aID=60099&searchStr=obesity. Accessed December 5, 2005. 8. Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. *Science*. 2005;307:1909-1914. 9. Devaskar SU. Neurohumoral regulation body weight gain. *Pediatr Diabetes*. 2001;2:131-144. 10. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. *J Clin Endocrinol Metab*. 2004;89:2548-2556

INDEX OF ADVERTISERS

ADVERTIS	SERS
Alcon Laboratories, Inc. CIPRODEX	69-
American Express Corporate	
Bayer HealthCare LLC ALEVE	
Biosite Triage BNP Test	
Boehringer Ingelheim Pharmaceuticals, Spiriva	Inc. 36, 70a-7
Cephalon, Inc. Hypersomnolence Disease State	
Florida Department of Health Online Immunization Registry	
Forest Pharmaceuticals, Inc. Lexapro	36a-3
Campral Namenda	48a-4 55
FFF Enterprises Inc. Corporate	
GELITA Health Initiative Corporate	22a-2
Lifescan, Inc. OneTouch Ultra2	
Eli Lilly and Company Cymbalta	15
Merck & Co., Inc. ProQuad Zostavax	40a-4 52a-5
Gardasil	82a-8
Novartis Pharmaceuticals Corporation Diovan	87
Novo Nordisk Inc. Levemir NovoLog Mix 70/30	59
Ortho-McNeil Neurologics, Inc.	74
P&G	42
Prilosec OTC Pfizer Inc.	
Lyrica Exubera Corporate	29, 64
Celebrex Caduet	33- 44-
Roche Laboratories Inc. and GlaxoSmith Boniva	24-26, 76
Sankyo Pharma Inc. Benicar	10a-
Sanofi Aventis Corporate Ketek	30, 84 50
Sanofi Pasteur Inc. ADACEL	17-
Sepracor Inc. Xopenex HFA	18a-1
Lunesta Smith & Nephew, Inc.	
VISA	26a-2
Corporate Wyeth Pharmaceuticals Inc	

Wyeth Pharmaceuticals Inc.