Skin Can Flag Drug Hypersensitivity Syndromes

BY DAMIAN MCNAMARA

Miami Bureau

SAN ANTONIO — A high level of clinical acumen is crucial to the early diagnosis of serious hypersensitivity reactions to antiepileptic drugs, Dr. Adelaide A. Hebert said at a meeting sponsored by Skin Disease Education Foundation.

Erythema multiforme is a major concern for patients with anticonvulsant hypersensitivity, said Dr. Hebert, professor of dermatology and pediatrics at the University of Texas, Houston.

If a patient presents with anticonvulsant hypersensitivity syndrome, as it is often called in the literature, check the medication's chemical structure before switching him or her to a different agent. "Cross-reactivity among aromatic anticonvulsant medications may be as high as 75%," Dr. Hebert said at the meeting.

There are no reports of drug hypersensitivity with levetiracetam, so it is a notable exception among antiepileptic drugs. "I have asked my neurology colleagues why everyone is not put on Keppra [levetiracetam]. They tell me it does not work well for all patients and it's a third-tier, more ex-

Although the rest of the anticonvulsants carry some risk, the aromatic anticonvulsants are most often involved in hypersensitivity syndromes, especially phenobarbital, phenytoin, and carbamazepine.

Phenobarbital can cause morbilliform

Takeda

reactions, urticaria, erythema multiforme, photosensitivity, and purpura.

Up to 10% of patients taking phenytoin will have a cutaneous reaction. A lupuslike reaction can occur or it may exacerbate preexisting lupus, Dr. Hebert said.

Some atypical cutaneous effects are reported with carbamazepine hypersensitivity, such as unusual bruising and oral ulceration. Photosensitivity, urticaria and Stevens-Johnson syndrome are other risks.

In one recent study, investigators assessed genetic susceptibility to carbamazepine hypersensitivity (Pharmacogenet. Genomics 2006;16:297-306).

Another high-risk anticonvulsant is lam-

'Cross-reactivity among aromatic anticonvulsant medications may be as high as 75%.'

DR. HEBERT

otrigine (Lamictal). Although it has no aromatic ring, "this does not mean lamotrigine does not carry its own risks," Dr. Hebert said. Serious cutaneous eruptions, which may be life threatening, occur more often in children than in adults (1 in 100 pediatric patients versus 1 in 333 adult patients). "Not many medications cause such a high frequency," she said.

About 10% of patients will develop erythema and a maculopapular eruption, usually within the first 2-8 weeks of lamotrigine use. A history of rash related to another antiepileptic and age younger than 13 years were predictors in one study (Epilepsia 2006;47:318-22).

Initiate lamotrigine at the lowest possible dose and increase slowly. Caution is advised when it is combined with valproic acid since this triples lamotrigine's half-life. A lamotrigine-associated eruption is more likely with this combination, especially as the lamotrigine dose increases over time.

Valproic acid on its own can cause erythema multiforme and Stevens-Johnson syndrome. Alopecia, petechiae, photosensitivity, and pruritus are other possibilities. It can also cause diaphoresis.

With any hypersensitivity reaction, discontinue the drug, get liver function tests and a complete blood count with differential, measure creatine levels, and do a urinalysis. Administer corticosteroids if the reaction is severe, Dr. Hebert advised.

Management of anticonvulsant hypersensitivity syndrome includes avoidance of all aromatic anticonvulsants or other causative medications. Aromatic anticonvulsants include felbamate (Felbatol), fosphenytoin (Cerebyx), and primidone. Cross-reactivity can be avoided by choosing a nonaromatic agent such as ethosuximide (Zarontin), gabapentin (Neurontin), tiagabine (Gabitril), or topiramate (Topamax). "It is a very good idea to also talk to a family member about this [crossreactivity] and the risk of future hypersensitivity reactions," Dr. Hebert said. SDEF and this news organization are wholly owned subsidiaries of Elsevier. ■

ORozerem...

ROZEREM™

INDICATIONS AND USAGE
ROZEREM is indicated for the treatment of insomnia characterized by difficulty with sleep onset.

CONTRAINDICATIONS
ROZEREM is contraindicated in patients with a hypersensitivity to ramelteon or any components of the ROZEREM formulation.

WARNINGS
Since sleep disturbances may be the presenting manifestation of a physical and/or psychiatric disorder, symptomatic treatment of insomnia should be initiated only after a careful evaluation of the patient. The fallure of insomnia to remit after a reasonable period of treatment may indicate the presence of a primary psychiatric and/or medical illness that should be evaluated. Worsening of insomnia, or the emergence of new cognitive or behavioral abnormalities, may be the result of an unrecognized underlying psychiatric and/or hypnotics, exacerbation of insomnia and emergence of cognitive and behavioral abnormalities were seen with ROZEREM during the clinical development program.

ROZEREM should not be used in combination with fluvoxamine (see PRE-CAUTIONS: Drug Interactions).

A variety of cognitive and behavior changes have been reported to occur in association with the use of hypnotics. In primarily depressed patients, worsening of depression, including suicidal ideation, has been reported in association with the use of hypnotics.

After taking ROZEREM, patients should confine their activities to those necessary to prepare for bed.

PRECAUTIONS

General

ROZEREM has not been studied in subjects with severe sleep apnea or
severe OPPD and is not recommended for use in those populations.
Patients should be advised to exercise caution if they consume alcohol in
combination with ROZEREM.

combination with NUZENEM. Use in Adolescents and Children ROZEREM has been associated with an effect on reproductive hormones in adults, e.g. decreased testosterone levels and increased prolactin levels. It is not known what effect chronic or even chronic intermittent use of ROZEREM may have on the reproductive axis in developing humans (see Pediatric Use)

Information for Patients
Patients should be advised to take ROZEREM within 30 minutes prior to going to bed and should confine their activities to those necessary to pre

ror bed. Patients should be advised to avoid engaging in hazardous activities (such as operating a motor vehicle or heavy machinery) after taking ROZEREM. Patients should be advised that they should not take ROZEREM with or immediately after a high fat meal.

Patients should be advised to consult their health care provider if they experience worsening of insomnia or any new behavioral signs or symptoms of

Patients should consult their health care provider if they experience one of the following; cessation of menses or galactorrhea in females, decreased libido, or problems with fertility.

Laboratory Tests No standard monitoring is required.

For patients presenting with unexplained amenorrhea, galactorrhea, decreased libido, or problems with fertility, assessment of prolactin levels and testosterone levels should be considered as appropriate.

Drug Interactions
ROZEREM has a highly variable inter-subject pharmacokinetic profile (approximately 109% coefficient of variation in C_{min} and AUC). As noted above, CVP1A2 is the major isozyme involved in the metabolism of ROZEREM; the CVP2C subfamily and CVP3A4 isozymes are also involved

ROZEREM; the CYP2C subfamily and CYP3A4 isozymes are also involved to a minor degree.

Effects of Other Drugs on ROZEREM Metabolism
Fluvoxamine (strong CYP1A2 inhibitor); When fluvoxamine 100 mg twice daily was administered for 3 days prior to single-dose co-administration of ROZEREM 16 mg and fluvoxamine, the AUG-piet for ramelteon increased approximately 190-fold, and the Cmax increased approximately 70-fold, compared to ROZEREM administered alone. ROZEREM should not be used in combination with fluvoxamine (See WARNINGS). Other less potent CYP1A2 inhibitors have not been adequately studied. ROZEREM should be administered with caution to patients taking less strong CYP1A2 inhibitors. Rifampin (strong CYP enzyme inducer): Administration of rifampin 600 mg once daily for 11 days resulted in a mean decrease of approximately 80% (40% to 90%) in total exposure to ramelteen and metabolite M-II, (both AUG-piet and G-piet) and the subject of the control of th

moucers such as rifampin. Katoconazole (strong CVP3A4 inhibitor): The AUC_{0-sit} and C_{max} of ramelteon increased by approximately 84% and 36%, respectively, when a single 16 mg dose of ROZEREM was administered on the fourth day of ketoconazole 200 mg twice daily administration, compared to administration of ROZEREM alone. Similar increases were seen in M-II pharmacokinetic variables. ROZEREM should be administration of the Compared with caution in subjects taking strong CVP3A4 inhibitors such as ketoconazole.

Fluconazole (strong CYP2C9 inhibitor). The total and peak systemic exposure (AUC_{0-H1} and C_{max}) of ramelteon after a single 16 mg dose of ROZEREM was increased by approximately 150% when administered with fluconazole. Similar increases were also seen in M-II exposure. ROZEREM should be administered with caution in subjects taking strong CYP2C9 inhibitors such as fluconazole.

as fluconazole. Interaction studies of concomitant administration of ROZEREM with fluove-tine (CYP2D6 inhibitor), omeprazole (CYP1A2 inducer/CYP2C19 inhibitor), theophylline (CYP1A2 substrate), and dextromethorphan (CYP2D6 substrated idn oft produce clinically meaningful changes in either peak or total expo-sures to ramelteon or the M-II metabolite.

sures to ramelteon or the M-II metabolite. Effects of ROZEREM on Metabolism of Other Drugs Concomitant administration of ROZEREM with omeprazole (CYP2C19 sub-strate), dextromethorphan (CYP2D6 substrate), midazolam (CYP3A4 substrate), theophylline (CYP1A2 substrate), digoxin (p-glycoprotein sub-strate), and warrarin (CYP2C9 [S]/CYP1A2 [R] substrate) did not produce clinically meaningful changes in peak and total exposures to these drugs. Effect of Alcohol on Rozerem Alcohol: With single-dose, daytime co-administration of ROZEREM 32 mg and alcohol (0.6 g/kg), there were no clinically meaningful or statistically sig-

Carcinogenesis, Mutagenesis, and Impairment of Fertility

Carcinogenesis, Mutagenesis, and Impairment of Fertility
Carcinogenesis
In a two-year carcinogenicity study, B6C3F, mice were administered ramelteor
at doses of 0, 30, 100, 300, or 1000 mg/kg/day yor algavage. Male mice
exhibited a dose-related increase in the incidence of hepatic tumors at dose
levels ≥ 100 mg/kg/day including hepatic adenoma, hepatic carcinoma, and
hepatoblastoma. Female mice developed a dose-related increase in the incidence of hepatic adenomas at dose levels ≥ 300 mg/kg/day and hepatic
carcinoma at the 1000 mg/kg/day dose level. The no-effect level for hepatic
tumors in male mice was 30 mg/kg/day (103-times and 3-times the therapeut
to exposure to rametleon and the active metabolite M-II, respectively, at the
maximum recommended human dose [MRHD] based on an area-under-thecurve [AUC] comparison). The no-effect level for hepatic tumors in female
mice was 100 mg/kg/day (827-times and 12-times the therapeutic exposure
to ramelteon and M-II, respectively, at the MRHD based on AUC).
In a two-year carcinogenicity study conducted in the Spraque-Dawley rat,
male and female rats were administered ramelteon at doses of 0, 15, 60,
250 or 1000 mg/kg/day by or al gavage. Male rats exhibited a dose-related
increase in the incidence of hepatic adenoma and benign Leydig cell tumors
of the testis at dose levels ≥ 250 mg/kg/day dose level. Female rats exhibited a dose-related increase in
the incidence of hepatic adenoma at dose levels ≥ 60 mg/kg/day and hepatic
carcinoma at the
1000 mg/kg/day dose level. Female rats exhibited a dose-related increase in
the incidence of hepatic adenoma in male rats was 60 mg/kg/day and hepatic
carcinoma at the
1000 mg/kg/day dose level. Female rats exhibited a dose-related increase in
the incidence of hepatic adenoma in response to ramelteon and M-II,
respectively, at the MRHD based on AUC). The no-effect level for hepatic
tumors in female rats was 15 mg/kg/day (47-times and 16-times the
therapeutic exposure to ramelteon and M-II,
respectively, at the MRHD based on AUC).

based on AUC).

The development of hepatic tumors in rodents following chronic treatment with non-genotoxic compounds may be secondary to microsomal enzyme induction, a mechanism for tumor generation not thought to occur in humans. Leydig cell tumor development following treatment with non-genotoxic compounds in rodents has been linked to reductions in circulating testosterone levels with compensatory increases in lutelinizing hormone release, which is a known proliferative stimulus to Leydig cells in the rat testis. Rat Leydig cells are more sensitive to the stimulatory effects of lutelinizing hormone enhan human Leydig cells. In mechanistic studies conducted in the rat, daily ramelteno administration at 250 and 1000 mg/kg/day for 4 weeks was associated with a reduction in plasma testosterone levels. In the same study, lutelinizing hormone levels were elevated over a 24 hour period after the last ramelteon treatment; however, the durability of this lutelinizing hormone finding and its support for the proposed mechanistic explanation was not clearly established.

explanation was not uclearly escapinate.

Although the rodent tumors observed following ramelteon treatment occurred at plasma levels of ramelteon and M-II in excess of mean clinical plasma concentrations at the MRHD, the relevance of both rodent hepatic tumors and benign rat Leydig cell tumors to humans is not known.

Mutagenesis.

Ramelteon was not genotoxic in the following: *in vitro* bacterial reverse mutation (Ames) assay, *in vitro* mammalian cell gene mutation assay using the mouse lymphoma TK^{1/2} cell line; *in vivolin vitro* unscheduled DNA synthesis assay in rat hepatocytes; and in *in vivo* micronucleus assays conducted in mouse and rat. Ramelteon was positive in the chromosomal aberration assay in Chinese hamster lung cells in the presence of S9 metabolic activation.

Separate studies indicated that the concentration of the M-II metabolite formed by the rat liver S9 fraction used in the *in vitro* genetic toxicology studies described above, exceeded the concentration of ramelteon; therefore, the genotoxic potential of the M-II metabolite was also assessed in these studies.

the genotoxic potential of the M-II metabolite was also assessed in these studies.
Impairment of Fertility
Ramelteon was administered to male and female Sprague-Dawley rats in an initial fertility and early embryonic development study at dose levels of 6, 60, or 600 mg/kg/day. No effects on male or female mating or fertility were observed with a ramelteon dose up to 600 mg/kg/day (86-times higher than the MRHD on a mg/m² basis). Irregular estrus cycles, reduction in the number of implants, and reduction in the number of live embryos were noted with dosing females at ≥ 60 mg/kg/day (78-times higher than the MRHD on a mg/m² basis). A reduction in the number of or oppra late accurred at the 600 mg/kg/day dose level. Administration of ramelteon up to 600 mg/kg/day dose level. Administration of ramelteon up to 600 mg/kg/day of to male rats for 7 weeks had no effect on sperm quality and when the treated male rats were mated with untreated female rats there was no effect on implants or embryos. In a repeat of this study using oral administration of ramelteon at 20, 60 or 200 mg/kg/day for the same study duration, females demonstrated irregular estrus cycles with doses > 60 mg/kg/day, but no effects were seen on implantation or embryo viability. The no-effect dose for fertility endpoints was 20 mg/kg/day in males (78-times higher than the MRHD on a mg/m² basis) and 600 mg/kg/day in males (78-times higher than the MRHD on a mg/m² basis) when considering all studies.

Pregnancy:* Pregnancy Category C

Ramelteon has been shown to be a developmental teratogen in the rat when given in doses 197 times higher than the maximum recommended human dose (MRHD) on a mg/m² basis. There are no adequate and well-controlled studies in pregnant women. Ramelteon should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

**Pregnancy:* Pregnant rabiver eadditionally observed. The no-effect level for mg/kg/day, avaita and decreased sopontaneous movement. At maternally toxic doses (150 mg/k

higher than the therapeutic exposure to ramelteon and M-II, respectively, at the MRHD based on AUC). The effects of ramelteon on pre- and post-natal development in the rat were studied by administration of ramelteon to the pregnant rat by oral gavage at doses of 0, 30, 100, or 300 mg/kg/day from day 6 of gestation through parturition to postnatal (lactation) day 21, at which time offspring were waned. Maternal toxicity was noted at doses of 100 mg/kg/day or greater and consisted of reduced body weight dain and increased adrenal gland weight. Reduced body weight during the post-wearing period was also noticed in the offspring of the groups given 100 mg/kg/day and higher. Offspring in the 300 mg/kg/day group demonstrated physical and developmental delays including delayed cruption of the lower incisors, a delayed acquisition of the righting reflex, and an alteration of emotional response. These delays are often observed in the presence of reduced offspring body weight but may still be indicative of developmental delay. An apparent decrease in the viability of offspring in the 300 mg/kg/day group also showed evidence of diaphragmatic hernia, a finding observed in the pre- and the pre- and the study previously described. There were no effects on the reproductive capacity of offspring and the resulting progeny were not different from those of vehicle-treated offspring. The no-effect level for pre- and postnatal development in this study was 30 mg/kg/day - fine higher than the MRHD on a mg/m² basis).

John Ingaguary Collinson

Labor and Delivery

The potential effects of ROZEREM on the duration of labor and/or delivery, for either the mother or the fetus, have not been studied. ROZEREM has no established use in labor and delivery.

Safety and effectiveness of ROZEREM in pediatric patients have not been established. Further study is needed prior to determining that this product may be used safely in pre-pubescent and pubescent patients. Geriatric Use A total of 654 subjects in double-blind, placebo-controlled, efficacy trials who received ROZEREM were at least 65 years of age, or these, 199 were 75 years of age or older. No overall differences in safety or efficacy were observed between elderly and younger adult subjects. ADVERSE REACTIONS

one year.

Adverse Reactions Resulting in Discontinuation of Treatment
Five percent of the 3594 individual subjects exposed to ROZEREM in clinical
studies discontinued treatment owing to an adverse event, compared with
2% of the 1370 subjects receiving placebo. The most frequent adverse event
leading to discontinuation in subjects receiving ROZEREM were somnolence
(0.8%), dizziness (0.5%), nausea (0.3%), fatigue (0.3%), headache (0.3%),
and insomnia (0.3%).

(0.8%), dizziness (0.5%), nausea (0.3%), tatigue (0.3%), and insomnia (0.3%).

ROZEREM Most Commonly Observed Adverse Events in Phase 1-3 trials
The incidence of adverse events during the Phase 1 through 3 trials
(% placebo, n=1370; % ramelteon [8 mg], n=1250) were: headache NOS
(7%, 7%), somnolence (3%, 5%), latigue (2%, 4%), dizziness (3%, 5%),
nausea (2%, 3%), insomnia exacerbated (2%, 3%), upper respiratory tract
infection NOS (2%, 3%), diarrhea NOS (2%, 2%), myalgia (1%, 2%),
depression (1%, 2%), dysguesia (1%, 2%), arthratigia (1%, 2%),
influenza (0, 1%), blood cortisol decreased (0, 1%)
Escause clinical trials are conducted under widely varying conditions, advers
reaction rates observed in the clinical trials of a drug cannot be directly com
pared to rates in clinical trials of other drugs, and may not reflect the rates
observed in practice. The adverse reaction information from clinical trials
does, however, provide a basis for identifying the adverse events that appear
to be related to drug use and for approximating rates.

ROSEREM is not a controlled substance.

Human Data: See the CLINICAL TRIALS section, Studies Pertinent to Safety Concerns for Sleep-Promoting Agents in the Complete Prescribing

Information.

Animal Data. Ramelteon did not produce any signals from animal behavioral studies indicating that the drug produces rewarding effects. Monkeys did not self-administer ramelteon and the drug did not induce a conditioned place preference in rats. There was no generalization between ramelteon and midazolam. Ramelteon did not affect rotorod performance, an indicator of disruption of motor function, and it did not potentiate the ability of diazepam to interfere with rotorod performance.

continuation of ramelteon in animals or in humans after chronic adminis-tion did not produce withdrawal signs. Ramelteon does not appear to duce physical dependence.

OVERDOSAGE
Signs and Symptoms
No cases of ROZEREM overdose have been reported during clinical develop-

ment.

ROZEREM was administered in single doses up to 160 mg in an abuse liability rail. No safety or tolerability concerns were seen.

Recommended Treatment

General symptomatic and supportive measures should be used, along with immediate gastric lavage where appropriate. Intravenous fluids should be administered as needed. As in all cases of drug overdose, respiration, pulse, blood pressure, and other appropriate wital signs should be monitored, and general supportive measures employed.

general supportive measures employed.

Hemodialysis does not effectively reduce exposure to ROZEREM. Therefore, the use of dialysis in the treatment of overdosage is not appropriate. Poison Control Center

As with the management of all overdosage, the possibility of multiple drug ingestion should be considered. The physician may contact a poison control center for current information on the management of overdosage.

©2005, Takeda Pharmaceuticals America, Inc.

Takeda Ireland Ltd.
Kilruddery, County Wicklow, Republic o
Marketed by:
Takeda Pharmaceuticals America, Inc.
475 Half Day Road
Lisponship. U. 6060

References: 1. Rozerem package insert, Takeda Pharmaceuticals America, Inc. 2. Johnson MW, Suess PE, Griffiths RR. Ramelteon: a novel hypnotic lacking abuse liability and sedative side effects.

RAM-00238 ©2006 Takeda Pharmaceuticals North America, Inc.