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Illuminating the Role of Visible Light 
in Dermatology

Julia Stolyar, BA; Margaret Kabakova, BS; Jared Jagdeo, MD, MS

V isible light is part of the electromagnetic spectrum and is 
confined to a range of 400 to 700 nm. Visible light pho-
totherapy can be delivered across various wavelengths 

within this spectrum, with most research focusing on blue light 
(BL)(400-500 nm) and red light (RL)(600-700 nm). Blue light 
commonly is used to treat acne as well as actinic keratosis and 
other inflammatory disorders,1,2 while RL largely targets signs 
of skin aging and fibrosis.2,3 Because of its shorter wavelength, 
the clinically meaningful skin penetration of BL reaches up to 
1 mm and is confined to the epidermis; in contrast, RL can 
access the dermal adnexa due to its penetration depth of more 
than 2 mm.4 Therapeutically, visible light can be utilized alone 
(eg, photobiomodulation [PBM]) or in combination with a 
photosensitizing agent (eg, photodynamic therapy [PDT]).5,6

Our laboratory’s prior research has contributed to 
a greater understanding of the safety profile of visible 
light at various wavelengths.1,3 Specifically, our work has 
shown that BL (417 nm [range, 412-422 nm]) and RL  
(633 nm [range, 627-639 nm]) demonstrated no evi-
dence of DNA damage—via no formation of cyclobutane 
pyrimidine dimers and/or 6-4 photoproducts, the hall-
mark photolesions caused by UV exposure—in human 
dermal fibroblasts following visible light exposure at all 
fluences tested.1,3 This evidence reinforces the safety of 
visible light at clinically relevant wavelengths, supporting 
its integration into dermatologic practice. In this editorial, 
we highlight the key clinical applications of PBM and PDT 
and outline safety considerations for visible light-based 
therapies in dermatologic practice. 

Photobiomodulation
Photobiomodulation is a noninvasive treatment in which 
low-level lasers or light-emitting diodes deliver photons 
from a nonionizing light source to endogenous pho-
toreceptors, primarily cytochrome C oxidase.7-9 On the 
visible light spectrum, PBM primarily encompasses RL.7-9 

Photoactivation leads to production of reactive oxygen 
species as well as mitochondrial alterations, with result-
ing modulation of cellular activity.7-9 Upregulation of cel-
lular activity generally occurs at lower fluences (ie, energy 
delivered per unit area) of light, whereas higher fluences 
cause downregulation of cellular activity.5

Recent consensus guidelines, established with expert 
colleagues, define additional key parameters that are 
crucial to optimizing PBM treatment, including distance 
from the light source, area of the light beam, wavelength, 
length of treatment time, and number of treatments.5 
Understanding the effects of different parameter com-
binations is essential for clinicians to select the best 
treatment regimen for each patient. Our laboratory 
has conducted National Institutes of Health–funded  
phase 1 and phase 2 clinical trials to determine the safety 
and efficacy of red-light PBM.10-13 Additionally, we com-
pleted several pilot phase 2 clinical studies with com-
mercially available light-emitting diode face masks using 
PBM technology, which demonstrated a favorable safety 
profile and high patient satisfaction across multiple self-
reported measures.14,15 These findings highlight PBM as a 
reliable and well-tolerated therapeutic approach that can 
be administered in clinical settings or by patients at home.

Adverse effects of PBM therapy generally are mild and 
transient, most commonly manifesting as slight irritation 
and erythema.5 Overall, PBM is widely regarded as safe 
with a favorable and nontoxic profile across treatment 
settings. Growing evidence supports the role of PBM in 
managing wound healing, acne, alopecia, and skin aging, 
among other dermatologic concerns.8

Photodynamic Therapy
Photodynamic therapy is a noninvasive procedure during 
which a photosensitizer—typically 5-aminolevulinic acid 
(5-ALA) or a derivative, methyl aminolevulinate—reacts 
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with a light source and oxygen, resulting in reactive oxygen 
species.6,16 This reaction ultimately triggers targeted cellular 
destruction of the intended lesional skin but with negligible 
effects on adjacent nonlesional tissue.6 The efficacy of PDT 
is determined by several parameters, including composition 
and concentration of the photosensitizer, photosensitizer 
incubation temperature, and incubation time with the pho-
tosensitizer. Methyl aminolevulinate is a lipophilic molecule 
and may promote greater skin penetration and cellular 
uptake than 5-ALA, which is a hydrophilic molecule.6 

Our research further demonstrated that apoptosis 
increases in a dose- and temperature-dependent manner 
following 5-ALA exposure, both in cutaneous and mucosal 
squamous cell carcinoma cells and in human dermal fibro-
blasts.17,18 Our mechanistic insights have clinical relevance, as 
evidenced by an independent pilot study demonstrating that 
temperature-modulated PDT significantly improved actinic 
keratosis lesion clearance rates (P<.0001).19 Additionally, we 
determined that even short periods of incubation with 5-ALA 
(ie, 15-30 minutes) result in statistically significant increases 
in apoptosis (P<.05).20 Thus, these findings highlight that 
the choice of photosensitizing agent and the administration 
parameters are critical in determining PDT efficacy as well as 
the need to optimize clinical protocols.

Photodynamic therapy also has demonstrated general 
clinical and genotoxic safety, with the most common 
potential adverse events limited to temporary inflamma-
tion, erythema, and discomfort.21 A study in murine skin 
and human keratinocytes revealed that 5-ALA PDT had 
a photoprotective effect against previous irradiation with 
UVB (a known inducer of DNA damage) via removal of 
cyclobutane pyrimidine dimers.22 Thus, PDT has been rec-
ognized as a safe and effective therapeutic modality with 
broad applications in dermatology, including treatment of 
actinic keratosis and nonmelanoma skin cancers.16 

Clinical Safety, Photoprotection, and Precautions
While visible light has shown substantial therapeutic 
potential in dermatology, there are several safety measures 
and precautions to be aware of. Visible light constitutes 
approximately 44% of the solar output; therefore, precau-
tions against both UV and visible light are recommended 
for the general population.23 Cumulative exposure to 
visible light has been shown to trigger melanogenesis, 
resulting in persistent erythema, hyperpigmentation, 
and uneven skin tones across all Fitzpatrick skin types.24 
Individuals with skin of color are more photosensitive to 
visible light due to increased baseline melanin levels.24 
Similarly, patients with pigmentary conditions such as 
melasma and postinflammatory hyperpigmentation may 
experience worsening of their dermatologic symptoms 
due to underlying visible light photosensitivity.25 

Patients undergoing PBM or PDT could benefit from 
visible light protection. The primary form of photoprotec-
tion against visible light is tinted sunscreen, which con-
tains iron oxides and titanium dioxide.26 Iron (III) oxide 
is capable of blocking nearly all visible light damage.26 

Use of physical barriers such as wavelength-specific 
sunglasses and wide-brimmed hats also is important for 
preventing photodamage from visible light.26 

Final Thoughts
Visible light has a role in the treatment of a variety of skin 
conditions, including actinic keratosis, nonmelanoma skin 
cancers, acne, wound healing, skin fibrosis, and photo-
damage. Photobiomodulation and PDT represent 2 non-
invasive phototherapeutic options that utilize visible light 
to enact cellular changes necessary to improve skin health. 
Integrating visible light phototherapy into standard clini-
cal practice is important for enhancing patient outcomes. 
Clinicians should remain mindful of the rare pigmentary 
risks associated with visible light therapy devices. Future 
research should prioritize optimization of standardized 
protocols and expansion of clinical indications for visible 
light phototherapy.
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