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Background: Multiple sclerosis (MS), one of the most
common causes of neurological disability in young adults,
is a chronic central nervous system disease characterized
by immune-mediated inflammation, demyelination, and
neurodegeneration. MS may be difficult to diagnose due to
its protean neurological manifestations and the multitude of
other neurologic conditions that can produce white matter
lesions similar to MS demyelinating lesions. The wide clinical
variability of the disease makes it challenging to provide an
accurate prognosis in an individual with MS.

Observations: Magnetic resonance imaging (MRI) biomarkers
such as T2-lesions, chronic black holes, atrophy, paramagnetic
rim lesions (PRL), and the central vein sign (CVS), may

assist clinicians with the diagnosis and prognostication
of MS. Underscoring their importance, PRL and CVS will
be incorporated into the 2024 iteration of the McDonald
Criteria for the diagnosis of MS. Quantitative MRI techniques,
utilized in translational research, can quantify the degree of
microstructural injury and guide the development of future
therapies. This review discusses the impact, recent advances,
and limitations of imaging biomarkers and quantitative MRI
techniques with regard to routine MS clinical care and
translational research.

Conclusions: Clinicians caring for people with MS should
have a basic understanding of imaging biomarkers and their
implications for routine clinical care.

ultiple sclerosis (MS) is a complex,
chronic immune-mediated disease
of the central nervous system char-
acterized by focal inflammation, demye-
lination, and neurodegeneration. Magnetic
resonance imaging (MRI), first incorpo-
rated into the McDonald Criteria for the
diagnosis of MS in 2001, is an integral tool
in the diagnosis, prognosis, and therapeutic
monitoring of people with MS (PwMS).!
MRI research in MS is rapidly expanding
and offers insights into the pathophysiology
of MS with important implications for the
routine clinical care of PwMS. At the Consor-
tium of Multiple Sclerosis Centers 2024 An-
nual Meeting, the US Department of Veterans
Affairs (VA) MS Centers of Excellence hosted
an educational symposium highlighting MRI
biomarkers in MS, including T2-lesions,
chronic black holes (cBHs), brain atrophy,
paramagnetic rim lesions (PRLs), and the
central vein sign (CVS). The symposium also
provided a brief overview of quantitative MRI
techniques used to characterize MS lesion se-
verity and research applications of these tech-
niques. This clinical review summarizes the
main points of that symposium with the goal
of introducing key concepts to federal health
care practitioners caring for PwMS.

MRI BIOMARKERS IN MS
T2-lesions, Chronic Black Holes, and
Brain Atrophy

Focal immune-mediated inflammation and
demyelination in MS may be detected by
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MRI as hyperintense foci on T2-weighted
(T2-w) imaging (eg, T2-w turbo spin echo
or T2-w fluid attenuated inversion recov-
ery sequences). These T2-lesions, critical
for diagnosing MS, are typically ovoid and
occur in the periventricular, juxtacortical,
infratentorial spinal cord white matter (Fig-
ure 1A). T2-lesion number and volume
show some association with disability and
optic nerve.

Wattjes et al highlight 2 cases to demon-
strate this point: a man aged 52 years with
MS for 23 years and a woman aged 50 years
with MS for 11 years. Despite having MS
for a much shorter duration, the woman
had worse disability due to a higher lesion
number and volume.? T2-lesion volume also
impacts disability progression in PwMS.
Gauthier et al compared the probability of
progression in 3 women, all of whom were
aged 39 years and had MS for 6 years. The
profile with highest probability of disabil-
ity progression had the highest quartile of
T2-lesion volume.? T2-lesion volume over
2 years correlates with worse scores on dis-
ability metrics such as the MS functional
composite, paced auditory serial addition
task, and brain volume.* A 2024 systematic
review and meta-analysis demonstrated that
T2-lesion volume is significantly correlated
with clinical disability in PwMS.”

Select T2-lesions are also hypoin-
tense on T1-w spin echo images and are
known as cBHs (Figure 1B). Histologically,
T2-lesions with cBHs have more severe
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FIGURE 1. Imaging biomarkers of multiple sclerosis. A, axial fluid
attenuated inversion recovery images at 7T show multiple T2-lesions in
the periventricular and juxtacortical white matter (white arrows).

B, chronic black hole (black arrow) can be seen on T1-weighted imaging
at 3T. C, T2-lesions in panel A (white arrowhead) has a paramagnetic rim
lesion (white arrow) visible on susceptibility-weighted imaging at 7T.

D, central vein sign (white arrow) is visible on axial fluid attenuated
inversion recovery images at 7T.

architectural disruption than those without
cBHs.® ¢cBH number and volume are signif-
icantly correlated with disability, regardless
of the degree of hypointensity on T1-w im-
aging.>” A 10-year longitudinal study dem-
onstrated that cBHs were associated with
disease progression after 5 years while T2-
lesion volume was not, indicating that
cBHs may be a more accurate predictor of
disability.®

Brain atrophy, another imaging biomarker
of MS, affects both the cerebral white and
gray matter. White matter fraction (the vol-
ume of white matter relative to the intracra-
nial compartment volume) and gray matter
fraction (the volume of gray matter relative
to the intracranial compartment) are signif-
icantly lower among PwMS compared with
healthy controls. In addition, gray matter
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fraction is lower among patients with pri-
mary and secondary progressive MS com-
pared with those with relapsing-remitting
MS, clinically isolated syndrome (CIS), and
radiologically isolated syndrome (RIS). Gray
matter fraction is also correlated with several
motor and cognitive disability indices.?

Paramagnetic Rim Lesions
Neurologic worsening in PWMS occurs by
2 distinct mechanisms: relapse-associated
worsening, a stepwise worsening of symp-
toms due to incomplete recovery follow-
ing a relapse; and progression independent
of relapse activity (PIRA), which is an irre-
versible neurologic deterioration in the ab-
sence of clinical or radiological relapses.'®
PIRA is associated with neurodegeneration
and predominates in both primary and sec-
ondary progressive MS. However, recent
data demonstrated that PIRA may contrib-
ute to as much as 50% of disability wors-
ening in relapsing MS and occurs early in
the RMS disease course.'®!! Current high-
efficacy disease modifying therapy, such as
ocrelizumab, are extraordinarily success-
ful at preventing focal inflammation and
relapses but are less effective for prevent-
ing the slow march of disability progression
characterizing PIRA.'*"> The prevention of
PIRA is therefore an unmet treatment need.
Chronic active lesions (CALs) are an
important driver of PIRA. When an acute
gadolinium-enhancing lesion develops in
PwMS, there are 3 possible fates of this le-
sion. The lesion may become chronically in-
active, remyelinate, or transition to CALs."
The histopathologic signature of CALs is
compartmentalized, low-grade inflammation
behind an intact blood-brain barrier with ev-
idence of both active and chronic compo-
nents.'> CALs may be found not only in
cerebral white matter but also in the cerebral
cortex and spinal cord.'®!” Combined MRI
and histopathological studies have shown
that iron-laden microglia/macrophages can
be detected by susceptibility-based MRI as a
rim of paramagnetic signal surrounding se-
lect T2-lesions.'” These PRLs represent an
in vivo imaging biomarker of CAL (Figure
1C). According to the North American Im-
aging in MS Cooperative (NAIMS) consen-
sus criteria, a PRL must surround at least
two-thirds of the outer edge of a T2-lesion,
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be visible in > 2 consecutive MRI slices,
and cannot be contrast enhancing.*

PRLs can be visualized on multiple
susceptibility-based imaging methods, in-
cluding multiecho derived R2*/T2*, phase
maps, susceptibility-weighted imaging, and
quantitative susceptibility mapping.?!-*
Retrospective analyses have shown no sig-
nificant differences in sensitivity across
these imaging modalities.?* Although first
visualized with 7T MRI, PRLs may also be
detected by 1.5T and 3T MRI with com-
parable sensitivities.>>*” However, there
remains a significant knowledge gap re-
garding the accuracy of each imaging mo-
dality. Systematic, prospectively designed
studies are needed to ascertain the compar-
ative value of each method.

The presence of PRL is a poor prognostic
indicator. PwMS without PRLs have higher
levels of disability, are more likely to progress,
and demonstrate greater gray matter atrophy
and cognitive dysfunction when compared
with PwMS with PRLs.?* Lesions with PRL
tend to slowly expand, exhibit greater demy-
elination, and have diminished white matter
integrity:2! 230

PRLs may also be used as a diagnostic
tool. PRLs are highly specific for MS/CIS
with a 99.7% specificity and 98.4% positive
predictive value, although the sensitivity is
limited to 24%.3! Taken together, these data
indicate that the presence of a PRL substan-
tially increases the likelihood of an MS/CIS
diagnosis, whereas the absence of a PRL
does not exclude these diagnoses.

Several unanswered questions remain:
Why do select acute MS lesions transition
to CALs? How may investigators utilize
PRLs as outcome measures in future clin-
ical trials? How should PRLs be incorpo-
rated into the routine care of PWMS? As the
role of this imaging biomarker is clarified
both in the research and clinical settings,
clinicians caring for PwWMS can expect to in-
creasingly encounter the topic of PRLs in
the near future.

Central Vein Sign

A CVS is defined by the presence of a cen-
tral vessel within a demyelinating plaque
(Figure 1D). As early as the 1820s, MS
plaques on gross pathology were noted
to follow the course of a vessel. Early
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FIGURE 2. Quantitative magnetic resonance imaging techniques;
A, axial diffusivity; B, mean diffusivity; C, radial diffusivity; D, axonal
volume fraction; E, magnetization transfer ratio; F, macromolecular to

pool size ratio.

histological studies reported that up to 91%
of MS plaques had a central vessel pres-
ent.>? Lesion formation is dependent on the
movement of lymphocytes and other in-
flammatory cells from the systemic circula-
tion across the blood brain barrier into the
perivascular space, a privileged site where
immune cells interact with antigen present-
ing cells to launch an inflammatory cascade
and eventual demyelinating lesion.*

CVS can be visualized on 1.5T, 3T and
7T MRI. However, 7T MRI is superior to 3T
in the detection of CVS, with 85% of MS le-
sions having CVS visible compared with
45% on 3T3* With advances in 7T MRI, fluid
attenuated inversion recovery and T2* sus-
ceptibility, weighted sequences can be over-
laid, allowing simultaneous visualization
of the vessel and the demyelinating lesion.
With higher density of parenchymal veins in
the periventricular regions, the CVS is most
seen in lesions of this territory but can also
be present in juxtacortical, thalamic and in-
fratentorial lesions with decreasing preva-
lence as these approach the cortex.®

MS lesions are more likely to have CVS
than T2 hyperintense white matter lesions
of other causes, with a large study report-
ing 78% of MS lesions were CVS posi-
tive. Further, CVS positive lesions can be
found across all MS phenotypes including
relapsing remitting, primary progressive,
and secondary progressive.?> The CVS
is also specific to MS lesions and is an
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effective tool for differentiating MS lesions
from other common causes of T2 hyperin-
tense lesions including chronic ischemic
white matter disease,’® migraines,*” neu-
romyelitis optica spectrum disorders,*®*
Susac syndrome,* and systemic autoim-
mune diseases (Behcet disease, systemic
lupus erythematosus, and antiphospho-
lipid syndrome).*

With CVS emerging as a promising ra-
diographic biomarker for MS, NAIMS is-
sued a consensus statement on necessary
properties of a CVS. These criteria included
appearance of a thin hypointense line or
small dot, visualized in > 2 perpendicular
planes, with diameter < 2 mm, and run-
ning partially or entirely through the center
of the lesion. They also clarified that lesions
< 3 mm, confluent lesions, lesions with
multiple vessels present or poorly visual-
ized lesions were excluded.*

A shared CVS definition was a necessary
step toward routine use of CVS as a radio-
graphic biomarker and its incorporation
in the 2024 revised McDonald criteria.*
Remaining limitations including 7T MRI
is primarily available in research settings
and the lack of consensus on a diagnostic
threshold. There have been many proposed
methods, including a 40% cut off,* 60% cut
off,” and Select 3* or Select 6* methods.*
The goal of each method is to optimize sen-
sitivity and specificity while not compro-
mising efficiency of MRI review for both
neurologists and radiologists.

The CVS has significant potential as a ra-
diographic biomarker for MS and may allow
the early stages of MS to be differentiated
from other common causes of white matter
lesions on MRI. However, it remains unclear
whether CVS holds prognostic value for pa-
tients, if CVS is suggestive of differing under-
lying pathology, or if the presence of a CVS is
dynamic over time. Progress in these areas is
anticipated as CVS is incorporated into rou-
tine clinical practice.

QUANTITATIVE MRI TECHNIQUES

In the research setting, several imaging mo-
dalities can be used to quantify the degree
of microstructural injury in PwMS. The
goal of these methods is to identify and
quantify myelin and axonal damage, the
major drivers of neurodegeneration. Among
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these methods, diffusion-based imaging is a
measure of the amount of diffusion or fluid
mobility across the tissues of the brain.*
Diffusion-weighted imaging (DWI) yields
several parametric maps including axial dif-
fusivity (AD), radial diffusivity (RD), and
mean diffusivity (Figure 2 A, B, and C).
These parametric maps provide informa-
tion on different directions of water mol-
ecules’ movements. Myelin surrounds the
axons preventing water molecules diffusion
perpendicular to axons (RD) while axonal
content prevents water diffusion horizon-
tal to the axons (AD). Thus, AD is consid-
ered more specific to axonal injury, whereas
RD is specific to myelin content.*® A higher
value of any of these metrics is associated
with a higher degree of tissue injury.

Although sensitive to axonal and myelin
injury, AD and RD computed from single
b-shell DWI experience several limitations
including being affected by nonpathologic
factors such as fiber orientation, distribu-
tion, and crossing, and by various nonmy-
elin specific pathologies including fluid
accumulation during inflammation, myelin
sheath thickness, and axonal intactness.*®
Several multi b-shell methods have been
developed to overcome diffusion imaging
limitations. For example, work at the Nash-
ville VA MS Center of Excellence has fo-
cused on the use of the multicompartment
diffusion MRI with spherical mean tech-
nique (SMT). This method removes the ori-
entation dependency of the diffusion MRI
signal, increasing the signal-to-noise ratio
and reducing biases from fiber undulation,
crossing, and dispersion.* SMT generates
the apparent axonal volume fraction (V,),
which is a direct measure of axonal integ-
rity with lower values indicating lower ax-
onal content and higher tissue destruction
(Figure 2D). V. was previously validated in
MS as a measure of axonal integrity.*’

In terms of myelin, several other spe-
cific measures have been developed. Mag-
netization transfer ratio (MTR) is another
measure of tissue integrity that has been
validated as a measure of tissue injury in
MS (Figure 2E).>*! Zheng et al found that
the percentage of lesions with low MTR
was significantly higher among patients
whose disease disability progressed com-
pared with patients who did not.>
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Selective inversion recovery with quan-
titative magnetization transfer (SIR-qMT)
was developed to account for the limita-
tions of MTR, including its sensitivity to
edema and axonal density.”> Germane to
myelin measurements, SIR-qMT generates
the macromolecular to free size ratio (PSR).
PSR represents the ratio of protons bound
to macromolecules (myelin) to free protons
(Figure 2F). PSR is considered a marker of
myelin integrity, with lower values correlat-
ing with disability severity and indicating
higher tissue damage and lower myelin con-
tent. Previous studies from the Nashville VA
MS Center of Excellence validated the use of
SIR-qMT among patients with MS, CIS, RIS,
and healthy controls.>

Quantitative MRI has several research
applications in the field of MS. We demon-
strated that PRL harbor a higher degree of
myelin injury indicated by PSR compared
with rimless lesions.” These MRI tech-
niques are also helpful to investigate tissues
surrounding the lesions, called normal ap-
pearing white matter (NAWM). Using quan-
titative MRI techniques such as MTR,>?
PSR,” and V_,* investigators have dem-
onstrated that NAWM is injured in PwMS,
and proximal NAWM may have higher de-
gree of tissue damage compared with distant
NAWM.>

ANTICIPATED INNOVATIONS AND
CHALLENGES

In the field of quantitative MRI, several new
techniques are being adopted. Researchers
are developing techniques such as myelin
water fraction which evaluates the interac-
tion between water and protons to measure
myelin content. This is considered an ad-
vancement as it takes into account edema
resulting from MS injury®® Another exam-
ple is multicompartment diffusion imag-
ing, such as standard model imaging,’” and
neurite orientation dispersion and density
imaging,”® which considers water as an ad-
ditional compartment compared with the
SMT derived V, . For PRL identification,
more advanced methodologic techniques
are developing such quantitative suscep-
tibility mapping (QSM), which can detect
iron deposits that surround the lesions with
relatively high sensitivity and specificity of
identifying PRL.>
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Despite these innovations, several chal-
lenges remain before possible incorporation
into the clinical setting. These limitations
include longer scan time, familiarity of cli-
nicians in using these maps, higher finan-
cial cost, and the necessity of advanced
imaging processing skills. Artificial intel-
ligence is a promising tool that may over-
come these challenges through creating
automated processing pipelines and devel-
oping synthetic maps without the need for
additional acquisition.®

CONCLUSIONS

MRI is the most important tool for diagnos-
ing and treating PwMS. Imaging biomark-
ers such as T2-lesions, ¢cBHs, brain atrophy,
PRLs, and CVS provide insight into the dis-
ease’s pathogenesis and are invaluable for the
accurate diagnosis and prognostication of
MS. Quantitative MRI techniques, while not
available in the clinical setting, are impor-
tant tools for translational research that may
help direct the development of future thera-
peutics. In the near future, clinicians caring
for PWMS should expect to encounter these
imaging biomarkers more frequently in the
clinical setting, especially with the inclusion
of PRLs and CVS in the next iteration of the
McDonald diagnostic criteria.
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