PROGRAM PROFILE

The Litter Olympics: Addressing Individual Critical Tasks Lists Requirements in a Forward-Deployed Setting

Angelica L. Jones, MDa; John P. Kuckelman, DOb; Jason S. Radowsky, MDc; Christopher A. Mitchell, MDa

Background: Individual critical tasks (ICTs) specify the skills and knowledge required for each military occupational specialty (MOS) for enlisted soldiers and areas of concentration (AOCs) for officers. This article describes a structured training method designed to enhance ICT proficiency and reinforce other critical medical skills while deployed in a Role 3 environment in Baghdad, Iraq. The Litter Olympics approach integrates interdisciplinary collaboration and physical exertion into skill reinforcement to improve medical readiness.

Observations: The Litter Olympics were conducted with mixed MOS/AOC teams, including nonmedical personnel such as administrative, signal, and engineering specialists. Teams progressed through a series of stations inside and outside the Role 3 hospital, completing ICTs under the supervision of higher-level health care practitioners. Tasks were selected based on their relevance to deployed medical care and their inclusion in ICTs, ensuring alignment with mission-essential skills. Participants completed essential ICTs,

including initiating saline locks, applying occlusive dressings, performing needle decompressions, applying tourniquets, and treating pelvic injuries with stabilization devices. Additional deployment-relevant skills included patient movement inside and outside a hospital setting, maintaining spinal precautions, establishing communication via satellite radio, executing a 9-line MEDEVAC request, performing cricothyroidotomies, and conducting Eldon card testing. All teams completed the course within 2 hours and feedback suggested increased confidence and proficiency in critical skills.

Conclusions: The Litter Olympics provide a structured, reproducible format for sustaining medical readiness in a deployed Role 3 setting. By integrating interdisciplinary teamwork, physical engagement, and practical skill application, it offers a dynamic alternative to traditional training methods. This model can be adapted for both deployed and stateside training environments, enhancing medical preparedness while fostering esprit de corps.

ilitary medical personnel rely on individual critical tasks lists (ICTLs) to maintain proficiency in essential medical skills during deployments. However, sustaining these competencies in a low-casualty operational setting presents unique challenges. Traditional training methods, such as lectures or simulations outside operational contexts, may lack engagement and fail to replicate the stressors of real-world scenarios. Previous research has emphasized the importance of continuous medical readiness training in austere environments, highlighting the need for innovative approaches.^{1,2}

The Litter Olympics was developed as an in-theater training exercise designed to enhance medical readiness, foster interdisciplinary teamwork, and incorporate physical exertion into skill maintenance. By requiring teams to carry a patient litter through multiple "events," the exercise reinforced teamwork within a medical readiness-focused series inspired by an Olympic decathlon. This article discusses the feasibility, effectiveness, and potential impact of the Litter

Olympics as a training tool for maintaining ICTLs in a deployed environment.

PROGRAM

The Litter Olympics were implemented at a Role 3 medical facility in Baghdad, Iraq, where teams composed of individuals from military occupational specialties (MOSs) and areas of concentration (AOCs) participated. Role 3 facilities provide specialty surgical and critical care capabilities, enabling a robust medical training environment.³ The event was designed to reflect the interdisciplinary nature of deployed medical teams and incorporated hands-on training stations covering critical medical skills such as traction splinting, spinal precautions, patient movement, hemorrhage control, airway management, and tactical evacuation procedures.

Tasks were selected based on their relevance to deployed medical care and their inclusion in ICTLs, ensuring alignment with mission-essential skills. Participants were evaluated on task completion, efficiency, and teamwork by experienced medical personnel. Postexercise surveys assessed

Author affiliations can be found at the end of this article. **Correspondence**: Christopher Mitchell (christopheramitchell@ qmail.com)

Fed Pract. 2025;42(11). Published online November 14. doi:10.12788/fp.0651

mdedge.com/fedprac

NOVEMBER 2025 • FEDERAL PRACTITIONER • 427

TABLE 1. Completed Tasks and Skills

Category	Description	
Official individual critical tasks	 Treating a pelvic injury/apply a pelvic stabilization device Initiate a saline lock Perform a needle decompression Apply a rigid splint Apply tourniquet to control extremity bleeding Apply an occlusive dressing Demonstrate application of a hare traction splint 	
Deployment medical skills	 Patient movement Spinal precautions and C-collar placement Setting up a satellite radio and delivering a 9-line Cricothyroidotomies Eldon card testing 	

TABLE 2. Participant Demographics (N = 29)

MOS/AOC	Description	Participants, No.
66E	Perioperative nurse	2
66H	Medical surgical nurse	3
66S	Critical care nurse	4
66T	Emergency nurse	1
68C	Practical nursing specialist	6
68D	Operating room specialist	2
69K	Medical laboratory specialist	3
68Q	Pharmacy technician	2
68V	Respiratory specialist	2
68W	Combat medic specialist	4

Abbreviations: AOC, area of concentration; MOS, military occupational specialty.

skill improvement, confidence levels, and areas for refinement. Future studies should incorporate structured performance metrics, such as pre- and postevent evaluations, to quantify proficiency gains (Table 1).

Five mixed MOS/AOC teams participated in the event, completing the exercise in an average time of 50 minutes (Table 2). Participants reported increased confidence in performing ICTs, particularly in patient movement, hemorrhage control, and airway management. The interdisciplinary nature of the teams facilitated peer teaching and cross-training, allowing individuals to better understand each other's roles and responsibilities. This mirrors findings in previous studies on predeployment training that emphasize the importance of collaborative, hands-on learning. The physical aspect of the exercise was well received, as it simulated

operational conditions and reinforced endurance in high-stress environments. Some tasks, such as cricothyroidotomy and satellite radio setup, required additional instruction, highlighting areas for improvement in future iterations.

DISCUSSION

The Litter Olympics provide a dynamic alternative to traditional classroom instruction by integrating realistic, scenario-based training. However, several limitations were identified. The most significant was the lack of formalized outcome metrics. While qualitative feedback was overwhelmingly positive, no structured performance assessment tool, such as pre- and postevent skill evaluations, was used. Future studies should incorporate objective measures of competency to strengthen the evidence base for this training model. Additionally, participant feedback suggested that more structured debriefing sessions postexercise would enhance learning retention and provide actionable insights for future program modifications.

Another consideration is the scalability and adaptability of the exercise. While effective in a Role 3 setting, modifications may be required for smaller units or lower levels of care. Future iterations could adapt the format for Role 1 or 2 environments by reducing the number of stations while preserving the core training elements. Furthermore, the event relied on access to specialized personnel and equipment, which may not always be feasible in austere settings. Developing a streamlined version focusing on essential tasks could improve accessibility and sustainability across different operational environments.

Participants expressed a preference for this hands-on, competitive training model over traditional didactic instruction. However, further research should compare skill retention rates between the Litter Olympics and other training modalities to validate effectiveness. While peer teaching was a notable strength of the event, structured mentorship from senior medical personnel could further enhance skill acquisition and reinforce best practices.

CONCLUSIONS

The Litter Olympics present a reproducible, engaging, and effective method

for sustaining medical readiness in a deployed Role 3 setting. By fostering interdisciplinary collaboration and incorporating physical and cognitive stressors, it enhances both individual and team preparedness. Future research should develop standardized, measurable outcome assessments, explore application in diverse deployment settings, and optimize scalability for broader military medical training programs. Standardized evaluation tools should be developed to quantify performance improvements, and the training model should be expanded to include lower levels of care and nonmedical personnel. Structured debriefing sessions would also provide valuable insight into lessons learned and potential refinements. By integrating these enhancements, the Litter Olympics can serve as a cornerstone for maintaining operational medical readiness in deployed environments.

Author affiliations

^aCarl R. Darnall Army Medical Center, Fort Cavazos, Texas ^bMadigan Army Medical Center, Tacoma, Washington ^cWalter Reed National Military Medical Center, Bethesda, Maryland

Author disclosures

The authors report no actual or potential conflicts of interest with regard to this article.

Disclaimer

The opinions expressed herein are those of the authors and do not necessarily reflect those of Federal Practitioner, Frontline Medical Communications Inc., the US Government, or any of its agencies.

Ethics and consent

This medical readiness training event was not reviewed by an institutional review board.

References

- 1. Suresh MR, Valdez-Delgado KK, Staudt AM, et al. An assessment of pre-deployment training for army nurses and medics. Mil Med. 2021;186:203-211. doi:10.1093/milmed/usaa291
- of medical readiness training exercises: maintaining medical readiness in a low-volume combat casualty flow era. Mil Med. 2017;182:e1734-e1737. doi:10.7205/milmed-d-16-00335
- 3 multinational medical nit at Kandahar airfield 2005-2010. Can J Surg. 2011;54:S124-S129. doi:10.1503/cjs.024811
- pre-deployment training in Honduras: the 240th forward resuscitative surgical team experience. Mil Med. 2021;187:e690-e695. doi:10.1093/milmed/usaa545

15. Extent and Nature of Constation 11 991 33,780 31,991 4.121 4.120 4.321 4,520 36,103 36.111 349 3.063 2. Mead KC, Tennent DJ, Stinner DJ. The importance 17,052 38,173 88.06 88.6% Fyou are channel excitation papers, go to line 16 on page 3. Fyou are not do 3. Brisebois R, Hennecke P, Kao R, et al. The Role Statement of Ownership, Management, and Circulation (Requester Publications Only) UNITED STATES 4. Huh J, Brockmeyer JR, Bertsch SR, et al. Conducting 18. Dignature and Title of Ballot, Publisher, Business Manager, or Owner 09/26/2025

UNITED STATES
POSTAL SERVICE

Editor Name and complete matting address:

8. Comprete Making Address of Feedbackers or General Business Office of Publisher INS profe

E Full Hames and Complete Brising Addresses of Publisher, Editor, and Managing Editor (Do not series)

200-200 Method Street CT Galley by Suitalings, 4" Floor, Newson, NJ 07103-0000

Ionis Moltuso, 265-291 Materi Direct (2 Garevey Bulletig), 4" Floor, for

Statement of Ownership, Management, and Circulation (Requester Publications Only)

mdedge.com/fedprac

1125FED Litter.indd 429 11/5/2025 12:26:01 PM