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A number of soft tissue tumors are characterized by recurring genetic abnormalities. The
identification of these abnormalities has advanced our understanding of the biology of
these tumors and has led to the development of molecular tests that are helpful diagnos-
tically. This review will focus on the application of molecular diagnostic testing in select
mesenchymal tumors of the dermis and subcutis.
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There have been great advances in recent years in the
genetic characterization of cutaneous mesenchymal tu-

mors. A growing number of mesenchymal neoplasms are
being defined by recurring genetic events that make up a
so-called genetic signature, most often in the form of chro-
mosomal translocations that result in specific oncogenic fu-
sion genes. Knowledge and identification of these recurrent
molecular aberrations allow for more accurate diagnosis of
mesenchymal tumors and are advancing our understanding
of their underlying biology. The identification of these dis-
ease-defining genetic signatures is the basis for the develop-
ment of targeted therapies. Molecular testing is thus gaining
an increasingly important role in complementing histologic
examination and immunohistochemistry. This review will
focus on select cutaneous mesenchymal neoplasms with
known molecular hallmarks that are useful diagnostically.

Dermatofibrosarcoma
Protuberans
Dermatofibrosarcoma protuberans (DFSP) is a cutaneous fi-
brohistiocytic tumor of intermediate malignancy that most
frequently affects young-to-middle–aged adults on the trunk
or, less commonly, on the extremities as well as the head and
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neck. The typical presentation is of a nodule with slow but
persistent growth, often over several years. DFSP has a pro-
pensity for local recurrence, but only rarely metastasizes.
Management requires adequate margin control either by
wide-local excision or Mohs surgery, the choice of which
depends on individual tumor and patient characteristics as
well as institutional experience.1,2

Histologically, DFSP is characterized by a tight storiform
or cartwheel growth pattern of uniform and relatively bland
spindled cells, with extensive infiltration of the dermis and
subcutaneous fat (Fig. 1). The neoplastic cells are usually
marked strongly and diffusely with CD34. Several histologic
variants of DFSP exist and include pigmented DFSP (Bednar
tumor), giant cell fibroblastoma, and rare granular cell and
myxoid variants.3-5 Fibrosarcomatous transformation of
DFSP is heralded by fascicular growth of more atypical spin-
dled cells with greater mitotic activity (Figs. 2 and 3). Fibro-
sarcomatous transformation is thought to represent tumor
progression. Although some studies have not demonstrated an
increased risk of metastasis associated with fibrosarcomatous
transformation, there is a growing consensus that the risk of
metastasis is significantly increased with this finding.6-9 Fibro-
arcomatous areas may overrun the DFSP component, and these
reas often lose CD34 reactivity.

Translocations forming the fusion gene collagen type I
lpha 1 (COL1A1)-platelet-derived growth factor (PDGF�)
re the molecular hallmark of DFSP. This oncogenic chimer
esults from fusion of COL1A1 promoter on 17q22 to PDGF�

on 22q13. In one study of 27 patients, COL1A1-PDGF� was
emonstrated in nearly all cases of DFSP examined by mul-

iplex reverse transcription polymerase chain reaction (RT-

221

mailto:billins@ccf.org
http://dx.doi.org/10.1016/j.sder.2012.07.008


fi

e
t

c
t
t

P

f
d
s
7

222 A.L. Cheah and S.D. Billings
PCR) and fluorescence RNA in situ hybridization (FISH).10

COL1A1-PDGF� is also seen in pigmented DFSP, giant-cell
broblastoma, and myxoid and rare granular cell variants.3-5

Fibrosarcomatous transformation of DFSP also demonstrates
the same fusion.11,12 The COL1A1-PDGF� fusion gene most
often results from a supernumerary ring chromosome 22 that
contains low-level–amplified sequences from chromosomes
17q22ter and 22q10-q13.1.13-15 Less commonly, COL1A1-
PDGF� results from an unbalanced translocation t(17;
22)(q22;q13). There is significant breakpoint variability
within the COL1A1 gene, which can occur anywhere between
xons 6 and 47.16 Exon 2 of PDGF� is consistently present in
he COL1A1-PDGF� fusion.

Tumorigenesis in DFSP is thought to result from an auto-
rine-loop mechanism involving platelet-derived growth fac-
or receptors on cell membranes.17 The COL1A-PDGF� pro-
ein product is structurally similar to wild-type growth factor

Figure 1 Dermatofibrosarcoma protuberans (DFSP). Diffuse infiltra-
tion through the subcutaneous fat imparts a characteristic “honey-
comb” appearance.

Figure 2 Fibrosarcomatous transformation in DFSP. The tumor is
characterized by transition to densely cellular fascicles with signifi-
ecant cytologic atypia.
DGF-BB that, in turn, acts via PDGF� and PDGF� tyrosine
kinase receptors.17,18 Targeted therapy with the tyrosine ki-
nase inhibitor, imatinib mesylate, has recently received Food
and Drug Administration approval for unresectable, meta-
static, or recurrent DFSP. Recent clinical trials have shown
response rates of approximately 50% to this drug.19 Neoad-
juvant imatinib may also be of utility in reducing the surgical
morbidity in large tumors in which wide margins may be
difficult to achieve.

In practice, molecular testing in DFSP has utility both as a
diagnostic aid in challenging cases and to guide therapy.
Most cases of DFSP are easily diagnosed on the histopatho-
logic features. That said, significant diagnostic challenges
might arise in, for example, CD34-negative tumors that are
superficially sampled or tumors with variant histology or
unusual presentation. In circumstances where treatment
with imatinib mesylate is being considered, molecular con-
firmation of COL1A1-PDGF� is vital, as tumors lacking the
usion gene do not respond to this drug.20,21 RT-PCR for
etection of COL1A1-PDGF� has been studied most exten-
ively, and this method has a reported sensitivity between
4% and 96%, respectively.22 To cover the breakpoint vari-

ability in COL1A1, a multiplex polymerase chain reaction
(PCR) approach is often used.10,22,23 FISH assays using both
PDGF� break-apart and COL1A1/PDGF� dual-color dual-
fusion probe techniques have also been used.10,22,24,25 Al-
though less studied, some research reports a greater sensitiv-
ity of FISH for DFSP than RT-PCR.22,24

Angiomatoid
Fibrous Histiocytoma
Angiomatoid fibrous histiocytoma (AFH) is a rare fibrohis-
tiocytic tumor of intermediate malignancy that most com-
monly affects children and young adults. The mean age of
patients is 20 years, with a wide age range (from birth to 71
years).26 Most cases arise in the subcutis or deep dermis of the

Figure 3 Higher magnification of fibrosarcomatous component of
DFSP with significant nuclear atypia and prominent mitotic activity.
xtremities. AFH less commonly involves the trunk, head,
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and neck.27 Rarely, AFH can involve the deep soft tissue,
viscera, and central nervous system.28-30

The usual presentation of AFH is of a slow-growing and
clinically benign nodular or cystic mass, under 2 cm in di-
ameter. Antecedent trauma is sometimes reported. A minor-
ity of patients develop constitutional symptoms, including
fever, anemia, weight loss, and polyclonal gammopathy,
thought to be a result of cytokine production by the neo-
plasm and resolved with excision.27,30,31 Associated extensive
ymphadenopathy-simulating Castleman disease has also
een described.32

There has been much confusion over the behavior of AFH
since its original description by Enzinger in 1979. In Enzing-
er’s30 original study, 5 of 24 patients developed metastases
nd 3 died of the disease. Larger studies have subsequently
stablished the mostly indolent behavior of AFH. In a study
y Costa and Weiss,27 4 of 107 cases developed regional

lymph node metastases and 1 patient died of the disease.
Regional metastatic rates as low as 1% have subsequently
been reported.31 Management is with wide excision and care-
ul follow-up.

The classic histologic appearance of AFH is a nodular pro-
iferation of bland histiocytoid tumor cells with blood-filled
ystic spaces, surrounded by a dense, fibrous capsule and
ymphocytic infiltrate (Figs. 4 and 5). However, these char-
cteristic features are not always present in a biopsy speci-
en. Morphologic variants with striking atypia and mitoses
ay add to confusion with other atypical mesenchymal neo-
lasms with more aggressive behavior, such as pleomorphic
ndifferentiated sarcoma.33 Other unusual morphologic fea-
ures that may cause diagnostic difficulty include the pres-
nce of clear cells, rhabdomyoblast-like cells, and prominent
yxoid change.28,34 Immunohistochemistry has a limited

supportive role in the diagnosis of AFH because the neo-
plasm lacks a consistent and specific immunophenotype. In
about 50% of the cases, the tumor cells are positive for
desmin, CD68, epithelial membrane antigen, and/or

Figure 4 Angiomatoid fibrous histiocytoma. Classically, the tumor is
surrounded by a fibrous capsule and lymphocytic infiltrate. Pseu-

dovascular spaces filled with blood are commonly seen.
CD99.31,35-37 In a pediatric patient, desmin immunoreactivity
ay cause diagnostic confusion with rhabdomyosarcoma.
AFH is characterized by recurrent translocations involving

ither Ewing sarcoma breakpoint region 1 (EWSR1) on 22q
r its homologue fused in sarcoma (FUS) on 16p. The most
ommon oncogenic-fusion gene is EWSR1-cyclic adenosine
onophosphate responsive element-binding protein 1

CREB1), from t(2;22)(q33;q12), which is present in about
0% or more of cases.38,39 The other fusion genes identified in

AFH include FUS-activating transcription factor 1 (ATF1),
resulting from t(12;16)(q13;p11) (14,15), and EWSR1-
ATF1, resulting from t(12;22)(q13;q12).40,41

EWSR1 and FUS belong to the ten-eleven-translocation
(TET) family of RNA-binding proteins. EWSR1 has been im-
plicated in interactions with transcription factor IID (TFIID)
and RNA polymerase II and may have a role in transcriptional
regulation.42,43 ATF1 and CREB1 are members of the CREB
cyclic adenosine monophosphate responsive element-bind-
ng protein) family of DNA-binding transcription factors. Ac-
ivation of CREB and subsequent CREB-mediated transcrip-
ional activation result from stimulation by hormones and
eurotransmitters that raise intracellular cyclic adenosine
onophosphate levels.44,45 In EWSR1-CREB fusions, the

EWSR1 activation domain replaces the kinase-inducible do-
main of CREB. The result is a constitutively expressed tran-
scriptional activator. The exact targets of EWSR1-CREB fu-
sion genes are not known.

Molecular assays can be helpful in confirming the diagno-
sis of AFH. FISH assays with dual-color break-apart probes
can be used to identify EWSR1 or FUS gene rearrangements,
regardless of the translocation partner. In a study of 17 cases,
the sensitivity of this FISH method was 76%.46 FISH results
need to be interpreted with caution. A negative result by
FISH does not rule out the diagnosis of AFH. Possible expla-
nations for a negative FISH result include variant rearrange-
ments that are not detectable with the particular FISH probes
used, or translocations with different chromosomes alto-
gether. Of note, EWSR1 rearrangements occur in several

Figure 5 Angiomatoid fibrous histiocytoma. The histiocytoid tumor
cells have minimal atypia.
other soft tissue sarcomas, including the Ewing sarcoma fam-
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ily of tumors (ESFT), desmoplastic small round-cell tumor,
clear-cell sarcoma (CCS), extraskeletal myxoid chondrosar-
coma, and a subset of myoepithelial tumors.38,47-57 Correla-
tion with the histologic and immunohistochemical findings
remains paramount. RT-PCR is a sensitive and specific assay,
but the practical utility of this technique is limited by the
multiple primers to account for the various fusion transcripts
described in AFH.

Clear-Cell Sarcoma (Melanoma
of Soft Parts)
Clear-Cell Sarcoma (CCS) is a rare aggressive sarcoma with
melanocytic differentiation that typically affects young
adults. Most cases of CCS arise in the feet and hands and are
associated with tendons or aponeuroses. Rarely, CCS can
present in visceral and head-and-neck locations.58,59 A subset
of CCS arise as dermal-based primary cutaneous tumors,60

where they may be confused with malignant melanoma. CCS
usually presents as a slow-growing mass that may be associ-
ated with pain. The prognosis of CCS patients is generally
poor and typified by recurrences, metastases to the lymph
nodes, lung, and bone, and eventual death from disease.

CCS has overlapping histologic and immunohistochemi-
cal features with melanoma. It is characterized histologically
by uniform nests of epithelioid to spindled cells with clear to
eosinophilic cytoplasm and a central nucleus with a promi-
nent nucleolus (Fig. 6). Uncommonly, nests of CCS cells may
abut the epidermis and mimic junctional melanocytic nests
that may be confused with melanoma. However, CCS usually
lacks high mitotic activity and significant pleomorphism.
Like melanoma, CCS cells may contain melanin pigment,
and the tumor cells are immunoreactive for S-100 protein
and melanocytic markers, HMB-45 and Melan-A. The histo-
pathologic distinction of CCS from melanoma is difficult,
and molecular testing may be required to objectively distin-
guish the 2.

Although CCS and melanoma overlap phenotypically,
they are different entities at the molecular level. EWSR1 rear-

Figure 6 Clear cell sarcoma. The tumor is characterized by nests of

pithelioid tumor cells divided by thin fibrous septa.
angements are characteristic of CCS, most commonly in the
orm of EWSR1-ATF1 (from t[12;22][q13;q12]) or less com-
only as EWSR1-CREB1. Melanoma has not demonstrated

hese translocations.61 Activating mutations of BRAF and mi-
crosatellite instability are features commonly seen in mela-
noma and not in CCS.62-66

The t(12;22) translocation has been demonstrated in 70%
of cases of CCS by conventional cytogenetics, and the
EWSR1-ATF1 fusion transcripts have been demonstrated in
� 90% of cases by RT-PCR.51-54 Variant splicing results in 4

ifferent EWSR1-ATF1 fusion transcripts. The most-common
usion transcript is type 1 (34% of cases), involving EWSR1
xon 8 fused to ATF1 exon 4. The next most-common fusion
18% of cases) is type 2, involving EWSR1 exon 7 fused to
TF1 exon 5.51-54 Some CCS may demonstrate mixed fusion

types, most commonly a combination of types 1 and 2 (38%
of cases). An association between type of transcript and prog-
nosis has not been established.51-54 A small subset of CCS

arbors the EWSR1-CREB1 fusion, most commonly seen in
he gastrointestinal tract.38,53,54 There have also been isolated
eports of somatic soft tissue CCS that were positive for
WSR1-CREB1; 2 of these involved the hand and 1 was cen-
ered in the dermis.53,54

RT-PCR is the molecular assay most extensively studied for
CCS, with reports of sensitivity between 93% and 100%.67-69

RT-PCR allows determination of the EWSR1 translocation
partner (ATF vs CREB) and splice-site variations. The clinical
significance of these variations remains to be studied exten-
sively. The use of FISH break-apart probes to detect THE
EWSR1 rearrangement is a good alternative in specimens
with inadequate or degraded RNA. It appears to correlate
well with RT-PCR, and its sensitivity is reported from 70% to
100% in 2 studies.54,70

EWSR1-ATF1 is implicated in melanocytic differentiation
in CCS, via activation of the microphthalmia-associated tran-
scription factor (MITF).67 Melanocyte-specific isoforms of

ITF protein (MITF-M) and mRNA have been demonstrated
n CCS.67-69 Gastrointestinal CCS with the EWSR1-CREB1
fusion has little or no expression of MITF-M transcripts, and
these cases also tend to be negative for melanocytic mark-
ers.38 However, EWSR1-ATF1 is also present in AFH without
he demonstration of MITF-M transcripts, suggesting that
espite the presence of the same oncogenic fusions, other
ritical factors influence the eventual phenotype. MITF acti-
ates the tyrosine kinase c-Met. In vitro evidence of growth
rrest of CCS with c-Met inhibitors lends promise of targeted
olecular therapy for this aggressive sarcoma.71

Low-Grade
Fibromyxoid Sarcoma
Low-grade fibromyxoid sarcoma (LGFMS) is a sarcoma of
young-to-middle–aged adults. It typically involves the deep
soft tissues of the proximal extremities. Less commonly in-
volved sites include the trunk and head and neck. Isolated
cases involving the retroperitoneum, abdominal cavity, and

mediastinum have also been reported.72-77 Approximately
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20% cases of LGFMS arise as primary cutaneous neoplasms,
usually centered in the dermis or subcutis. A disproportion-
ate number of superficial LGFMS cases (40%) arise in chil-
dren.77 The typical presentation is of a slow-growing painless

ass. Both deep and superficial LGFMS have a local recur-
ence rate of approximately 10%.77,78 The risk of distant me-
astasis for deep-seated LGFMS is approximately 6%, but the
isk appears to be lower for primary cutaneous cases. In 1
tudy of 19 cases of superficial LGFMS, no metastases devel-
ped in a mean follow-up period of 44 months.77 However,

because recurrence and metastasis may occur many years
after diagnosis, patients with cutaneous LGFMS should still
be followed indefinitely.

Histologically, LGFMS has a characteristic zonal pattern of
alternating fibrous and myxoid areas (Fig. 7). The neoplastic
cells are spindled and bland, with a swirling arrangement. A
delicate curvilinear vascular pattern is commonly seen (Fig.
8). Hyalinizing spindle-cell tumor with giant rosettes was
described in earlier reports as a separate tumor, but is now
thought to be a morphologic variant of LGFMS, a relation-
ship proven by genetic studies showing that the 2 tumors
bear the same translocation.78-80 Sclerosing epithelioid fibro-
arcoma, a rare locally aggressive sarcoma of the deep soft
issues, also shows clinical and morphologic overlap with
GFMS, and some cases have demonstrated the same trans-

ocation, suggesting that a subset may be related to LGFMS.81

Histologic evaluation of LGFMS can be challenging because
of the tumor’s variable morphology and deceptively bland
appearance. Differential diagnoses of LGFMS are broad and
also include several benign and malignant entities. In 1 study,
75% cases of superficial LGFMS were misdiagnosed as be-
nign, and the most common misdiagnoses were nodular fas-
ciitis and fibromatosis.77 Myxofibrosarcoma and perineu-
ioma are 2 of the most difficult neoplasms to distinguish
rom LGFMS on histologic grounds alone. Limited biopsies
f these tumors may be indistinguishable. Immunohisto-
hemistry is of little help as a diagnostic aid in LGFMS. Focal

Figure 7 Low-grade fibromyxoid sarcoma (LGFMS). The tumor is
characterized by alternating fibrous and myxoid zones at low

power.
xpression of smooth muscle actin, epithelial membrane an-
igen, and CD68 may be seen.

LGFMS is characterized by rearrangements of FUS on
hromosome 16p. Up to 95% of LGFMS studied harbor the
US-CREB protein-like 2 (CREBL2) fusion gene, formed by
(7;16)(q34;p11). The less common FUS-CREB protein-like
(CREB3L1) variant, formed by t(11;16)(p11;p11), is found

n 5% of cases.82

FUS is a homologue of EWSR1 from the large TET family of
RNA-binding proteins (see section on Angiomatoid Fibrous
Histiocytoma). FUS rearrangements are also seen in myxoid
liposarcoma, where it is paired with DNA damage inducible
transcript 3 (DDIT3). The role of FUS-CREB in neoplasia is
not known, but the fusion brings CREB under the control of
the FUS transcriptional activator, resulting in an aberrant
transcription factor with more potent activity than wild-type
CREB.83,84

Molecular testing plays an important complementary role
in the diagnosis of LGFMS. RT-PCR results have led to reclas-
sification of a significant number of cases previously diag-
nosed as LGFMS in 2 studies.81,85 RT-PCR assays performed
n formalin-fixed paraffin-embedded (FFPE) tissues is rea-
onably sensitive (81%-88%).81,86 FISH testing for FUS gene

rearrangement is less sensitive (approximately 70%), but is a
good alternative to PCR, particularly in paraffin blocks with
poor-quality RNA.87,88 (Fig. 9). Negative FISH results may be
accounted for by variant breakpoints within the FUS gene,
different translocations, or truly fusion-negative cases of LG-
FMS. FUS gene rearrangements have not been demonstrated
in fibromatosis, myofibromatosis and perineuriomas.82,85

Postradiation Angiosarcoma
Cutaneous angiosarcoma arises in 3 major clinical settings:
(1) sporadic forms that usually affect elderly patients on the
head and neck, (2) chronic lymphedema-associated angio-
sarcoma, and (3) postradiation angiosarcoma. Postradiation
angiosarcoma usually arises in the field of radiation for breast

Figure 8 LGFMS. The tumor cells are arranged in a swirling pattern,
and thin curvilinear vessels are conspicuous.
carcinoma and is the rarest of the 3 forms of angiosarcoma.
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However, as greater emphasis is placed on breast-conserving
surgery, it is becoming an increasing problem. The latency
for postradiation angiosarcoma of the breast is short (median
6 years), but as many as 20% of cases may develop in under
3 years.89 Classic lymphedema-associated angiosarcoma
Stuart–Treves syndrome) develops on the upper extremities
f women who have had a mastectomy and axillary lymph
ode dissection. Angiosarcoma can also develop in other set-
ings of chronic lymphedema, including elephantiasis, mas-
ive localized lymphedema of the morbidly obese,90 and in

congenital lymphedema.91 Both secondary and sporadic
orms of angiosarcoma have a grim prognosis, with rapid
issemination and, in most instances, death from disease.
All clinical variants of angiosarcoma have a similar micro-

copic appearance of infiltrative neoplastic vessels ramifying
hrough the dermis, ranging from well-differentiated cases
ith subtle or focal atypia to cases with very pleomorphic

ndothelial cells with poorly recognizable vessels (Fig. 10).
n the postradiotherapy setting, distinguishing well-differen-
iated postradiation angiosarcoma from benign radiation-as-
ociated atypical vascular lesions (AVL) can be difficult (Fig.
1). There is significant clinical and morphologic overlap
etween the 2 entities; however, in contrast to angiosarcoma,
VL do not show aggressive behavior.92-95 Notably, AVL may

coexist with postradiation angiosarcoma, and some cases
show transitional areas of AVL with significant cytologic
atypia, suggesting that some cases of AVL may be a potential
precursor to angiosarcoma.95 Immunohistochemistry is un-
helpful in this distinction, as both AVL and angiosarcoma
will express endothelial markers, such as CD31, CD34, factor
VIII, and D2-40.

High-level amplification of the MYC oncogene is a recur-
ring feature of radiation and lymphedema-associated angio-
sarcoma, and is not seen in AVL or sporadic angiosarcoma.

Figure 9 LGFMS. Detection of FUS rearrangement by fluorescence
RNA in situ hybridization. Using dual-color break-apart probes,
separated red and green signals indicate rearrangement of FUS gene.

A fused yellow signal indicates intact FUS.
This finding suggests that secondary angiosarcoma arises
from different genetic mechanisms. MYC gene amplification
can be detected by FISH, and high-level amplification is de-
fined as � 8 or 9 MYC gene signals or tight clusters of sig-

als.96-99 (Fig. 12). This method has an overall sensitivity of
0% for the diagnosis of postradiation and lymphedema-
elated angiosarcoma.96-99 However, the reported sensitivity

has ranged widely from 55% in the initial study96 to 100% in
ubsequent studies.97-99 Although most cases studied were
ostradiation angiosarcoma in the setting of treatment of
reast carcinoma, secondary angiosarcoma of other sites
ere also MYC amplified, suggesting that this molecular fea-

ure is not a site-specific phenomenon. By Western blot, it

Figure 10 Postradiation angiosarcoma. The tumor is characterized
by infiltrating vessels with significant atypia and multilayering of the
endothelial cells.

Figure 11 Atypical vascular lesion. Ramifying vascular channels are
seen dissecting through the dermal collagen, without endothelial
multilayering. Limited biopsies of atypical vascular lesions may be

difficult to distinguish from well-differentiated angiosarcoma.
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appears that the MYC-II isoform is expressed by secondary
angiosarcoma and not by primary angiosarcoma.98

Immunohistochemistry for MYC overexpression appears
o correlate with FISH in the limited reports thus far.97,99

Given the inherent difficulty in discriminating well-differen-
tiated postradiation angiosarcoma from AVL, MYC immuno-

istochemistry may be a useful diagnostic aid in determining
he extent of angiosarcoma in resection specimens and in the
etting of small biopsy specimens. However, further studies
n the accuracy of this marker as a surrogate for MYC FISH

are needed.
The exact role of MYC in the pathogenesis of secondary

angiosarcoma is yet to be defined. MYC has diverse regulatory
oles in cell growth, proliferation, metabolism, differentia-
ion, and apoptosis, and its gene targets are broad.100 MYC
verexpression is seen in many other malignancies, including
arcinomas, melanoma, and various sarcomas.101-104 It is also

linked with adverse prognosis in several cancers.105-107

Epithelioid
Hemangioendothelioma
Epithelioid hemangioendothelioma (EHE) is a rare and
poorly understood vascular tumor that has been dogged by
confusion since its original description by Weiss and Enz-
inger in 1982.108 Adults are most commonly affected with a
wide age range. The most frequently involved sites include
somatic soft tissues, liver, lung, and bone. Multicentric pre-
sentation is common, particularly in the liver and skeleton.
EHE is commonly associated with pain, and cutaneous tu-
mors may present with ulcers.109,110 It was originally thought
that EHE was of borderline malignancy, with behavior be-

Figure 12 Postradiation angiosarcoma. Fluorescence RNA in situ hy-
bridization demonstrating that numerous copies of MYC (red signal)
are present relative to the centromere probe (blue signal).
tween that of hemangioma and angiosarcoma. However, the
behavior of EHE can be unpredictable, and a subset (approx-
imately 20%) has been seen to behave aggressively, with dis-
semination to the liver, lung, and bone, and can cause
death.111,112 According to the World Health Organization,
EHE is currently classified as a fully malignant neoplasm.26

Histologically, EHE is characterized by infiltrative cords or
nests of polygonal cells embedded within a myxohyaline
stroma (Fig. 13). Up to half of the cases arise from a blood
vessel, most commonly a vein. Intracytoplasmic vacuoles,
representing abortive vascular lumina, occasionally contain-
ing erythrocytes, are a characteristic feature of the tumor
cells. Well-formed vascular channels are usually not promi-
nent. Overlapping morphology and terminology add signif-
icant confusion to the distinction from other epithelioid vas-
cular proliferations, including epithelioid hemangioma,
epithelioid angiosarcoma, and epithelioid sarcoma-like he-
mangioendothelioma. In cases where the vasoformative na-
ture is not appreciated, there may be confusion with epithe-
lioid sarcoma, extraskeletal myxoid chondrosarcoma, mixed
tumor, or even metastatic adenocarcinoma. By immunohis-
tochemistry, EHE is positive for vascular markers CD31,
CD34, D2-40, and ETS related gene (ERG)113; it frequently
expresses cytokeratins and smooth muscle actin.113 How-
ver, this immunoprofile does not allow distinction from
ther epithelioid vascular proliferations.
EHE is characterized by a t(1;3)(p36;q25) translocation

esulting in the WW domain-containing transcription factor
(WWTR1)-calmodulin-binding transcription factor 1

CAMTA1) fusion gene.114,115 This translocation was initially
emonstrated in a report of 2 cases of EHE in 2001.116 The

same gene rearrangements were subsequently demonstrated
either by FISH or RT-PCR in 59 cases of EHE of various

Figure 13 Epithelioid hemangioendothelioma. Infiltrative cords of
epithelioid tumor cells are embedded within a myxohyaline stroma.
Intracytoplasmic vacuoles containing erythrocytes are present

within individual cells.
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sites.114,115 Epithelioid hemangioma, epithelioid angiosar-
oma, and other vascular neoplasms have not displayed this
ranslocation. WWTR1, located on chromosome 3q, func-
ions as a transcriptional coactivator and has been implicated
n differentiation of mesenchymal stem cells.117 WWTR1
verexpression is seen in breast, thyroid, and nonsmall-cell
ung carcinoma.118-120 CAMTA1, located on chromosome 1p,
s a calmodulin-binding transcription factor usually ex-
ressed in the brain. In the context of oligodendroglioma and
euroblastoma, which are central nervous system neoplasms
hat show chromosome 1p losses, CAMTA1 has been charac-
erized as a tumor suppressor gene.121,122 It appears more

likely that, when paired with WWTR1 in EHE, CAMTA1
functions as an oncogenic transcription factor. The exact
function of WWTR1-CAMTA1 fusion protein is not yet
known. FISH break-apart probes can be used to detect either
WWTR1 or CAMTA1 rearrangements, with equivalent sensi-
ivity (87%-89%) and specificity (100%) for EHE.1 The dis-
overy of a genetic hallmark in EHE should allow for more
bjective and accurate diagnosis of this rare tumor and help
s better understand its biology.

Ewing Sarcoma
Family of Tumors
Ewing sarcoma is traditionally regarded as an aggressive pe-
diatric small-round-cell tumor of the bone or deep soft tissue.
Rarely, Ewing sarcoma can arise as a primary cutaneous neo-
plasm. In the limited reports to date, most cutaneous ESFT
were small, localized dermal, or subcutaneous nodules in the
extremities or trunk, often associated with pain. The median
age is 17 years. In contrast to primary bone and deep soft
tissue ESFT that tend to be metastatic at presentation, super-

Figure 14 Cutaneous Ewing sarcoma. The tumor is characterized by
a circumscribed nodular proliferation of “small blue cells” within

the dermis with significant hemorrhage.
ficial ESFT appear to behave more indolently. Approximately
10% of cutaneous ESFT reported in the literature developed
metastasis. Overall survival also appears to be greater for
superficial ESFT (91%).123-128

Cutaneous ESFT is characterized histologically by circum-
scribed dermal or subcutaneous nodules of undifferentiated
“small round blue cells,” with stippled chromatin and prom-
inent mitotic activity (Figs. 14 and 15). The histologic differ-
ential diagnosis is broad and includes other round-cell tu-
mors that may occur in superficial locations. In pediatric
patients, rhabdomyosarcoma and neuroblastoma need to be
considered. Other differential diagnoses include lympho-
blastic lymphoma, carcinomas of skin appendage origin,
Merkel carcinoma, small-cell melanoma, and metastasis. By
immunohistochemistry, ESFT show strong membranous ex-
pression of the MIC2 gene product, CD99 (a feature that is
sensitive, but not specific). Positive nuclear expression for
Friend leukemia integration 1 transcription factor (FLI1) is
also characteristic, but may be variable. ESFT may also ex-
press cytokeratin, neuroendocrine markers, and S100 pro-
tein.

EWSR1 rearrangements are the genetic hallmark of ESFT.
Usually, this involves oncogenic fusions with various mem-
bers of the E-twenty-six (ETS) family of transcription factors,
of which there are � 30 members.129 Although EWSR1 can be
ranslocated to various other transcription factors in other
oft-tissue tumors, its partnership with ETS genes appear to
e specific for ESFT. EWSR1-FLI1, resulting from t(11;
2)(q24;q12), is the most common fusion gene in ESFT, seen

n � 85% of cases. Approximately 10% of cases harbor the
WSR1-ERG fusion gene, resulting from t(21;22)(q22;q12).
any other ETS genes have been implicated in EWSR1 fu-

ions, including ETS translocation variant 1 (ETV1), ETV4,
fth Ewing Sarcoma variant (FEV), and others.130-138

EWSR1-ETS fusion genes are thought to drive tumorigen-
esis and phenotype in ESFT. They have been shown to in-

Figure 15 Cutaneous Ewing sarcoma. Higher magnification of a solid
sheet of tumor cells with scant clear to eosinophilic cytoplasm,
coarsely stippled chromatin, and occasionally prominent nucleolus
and prominent mitotic activity.
duce small round-cell morphology and ESFT-like immuno-
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phenotype in mesenchymal stem cells.139 Though the
EWSR1-ETS genes have broad and complex functions; they
are best characterized by their role as aberrant transcription
factors.140-143 There are a multitude of proteins implicated as
downstream targets of EWSR1-ETS fusions, with various
roles in cell survival, proliferation, and differentiation.129,144

It is not known which of these targets is critical for oncogen-
esis in ESFT.

Molecular diagnostics plays a fundamental role in the dis-
tinction of ESFT from other small round cell tumors. RT-PCR
and FISH on FFPE tissue are both highly sensitive and spe-
cific in this regard.145-151 However, there is significant molec-
ular heterogeneity in ESFT, so RT-PCR assays require multi-
ple primers to cover the spectrum of fusion transcripts
identified in this tumor. Molecular heterogeneity in ESFT
results from breakpoint variability within EWSR1 and ETS
enes, different partnerships with EWSR1, and substitution
f EWSR1 itself by its homologue, FUS.134-136 In practice,

routine testing covers EWSR1-FLI1 and EWSR1-ERG tran-
scripts, as these account for � 95% of cases. However, even
within the most common fusion gene (EWSR1-FLI1), EWSR1
breakpoints can occur anywhere between introns 7 and 9,
and FLI1 breakpoints can occur between introns 3 and 9.152

Two major types of EWSR1-FLI1 transcripts have been de-
scribed: type 1 (EWSR1 exon 7 fused to FLI exon 6) in 60% of
cases, and type 2 (EWSR1 exon 7 fused to FLI1 exon 5) in

5% of cases. No prognostic difference between fusion types
as been shown by recent large prospective studies.153,154

Multiplex PCR technique is commonly used, as this allows
for the simultaneous amplification of multiple targets in one
reaction. Quantification of fusion transcripts can be done
with real-time PCR technology, which combines amplifica-
tion with simultaneous detection of amplified product. This
method has been proposed as a means to monitor minimal
residual disease, but its clinical utility needs to be evaluated
further.

EWSR1 rearrangement may also be detected by commer-
cial dual-color break-apart FISH assays, without determina-
tion of the exact translocation present. FISH appears to be as
sensitive as RT-PCR on FFPE tissue. One advantage of using
the break-apart EWSR1 FISH technique is that it has utility in
he diagnosis of other EWSR1-rearranged tumors, such as
FH and desmoplastic small round-cell tumor, among oth-
rs. However, as EWSR1 rearrangements are not specific, in-
erpretation of FISH results in isolation of the whole clinical
nd histopathologic picture can lead to potential error. Con-
rmation of EWSR1 rearrangement is more likely to be help-
ul if the suspicion of ESFT is already high. Given the molec-
lar heterogeneity in ESFT, failure to demonstrate EWSR1
earrangement also does not rule out the diagnosis of ESFT.
typical cases may require multiple molecular techniques to
stablish the diagnosis.

Conclusions
Specific genetic signatures characterize a growing number of
soft-tissue tumors that affect the skin. Molecular testing on

FFPE complements histology and immunohistochemistry in
the diagnosis of these tumors, especially in challenging cases
with atypical morphology, nonspecific immunophenotype,
and/or limited sampling. Molecular diagnostics also has im-
plications for more accurate classification and prognostica-
tion of poorly understood entities. Importantly, molecular
testing lays the foundation for the development of targeted
molecular therapies, and with that, there is a potential scope
to expand the application of molecular assays to the detection
of minimal residual disease and response to these therapies.
That said, molecular assays do have limitations and, like all
ancillary tests, their results require interpretation in the con-
text of the full clinical and histologic picture.
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