5 Points on Outcomes and Aseptic Survivorship of Revision Total Knee Arthroplasty

Jeffrey J. Cherian, DO, Anil Bhave, PT, Steven F. Harwin, MD, and Michael A. Mont, MD

ver the past 3 decades, total knee arthroplasty (TKA) has been considered a safe and effective treatment for end-stage knee arthritis.1 However, as the population, the incidence of obesity, and life expectancy continue to increase, the number of TKAs will rise as well.^{2,3} It is expected that over the next 16 years, the number of TKAs performed annually will exceed 3 million in the United States alone.⁴ This projection represents an over 600% increase from 2005 figures.⁵ Given the demographic shift expected over the next 2 decades, patients are anticipated to undergo these procedures at younger ages compared with previous generations, such that those age 65 years or younger will account for more than 55% of primary TKAs.⁶ More important, given this exponential growth in primary TKAs, there will be a concordant rise in revision procedures. It is expected that, the annual number has roughly doubled from that recorded for 2005.4

Compared with primary TKAs, however, revision TKAs

Dr. Cherian is an Orthopedic Research Fellow, and Mr. Bhave is Lead Physical Therapist, Center for Joint Preservation and Replacement, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland. Dr. Harwin is Orthopaedic Surgeon, Department of Orthopaedic Surgery, Mount Sinai Beth Israel Medical Center, New York, New York. Dr. Mont is Director, Center for Joint Preservation and Replacement, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland.

Authors' Disclosure Statement: The authors

in relation to this article.

report no actual or potential conflict of interest

Address correspondence to: Michael A. Mont, MD, Center for Joint Preservation and Replacement, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215 (tel, 410-601-8500; fax, 410-601-8501; email, mmont@ lifebridgehealth.org, rhondamont@aol.com).

Am J Orthop. 2016;45(2):79-85. Copyright Frontline Medical Communications Inc. 2016. All rights reserved. This is a companion piece to "5 Points on Implant Designs in Revision Total Knee Arthroplasty." have had less promising results, with survivorship as low as 60% over shorter periods.^{7,8} In addition, recent studies have found an even higher degree of dissatisfaction and functional limitations among revision TKA patients than among primary TKA patients, 15% to 30% of whom are unhappy with their procedures.⁹⁻¹¹ These shortcomings of revision TKAs are thought to result from several factors, including poor bone quality, insufficient bone stock, ligamentous instability, soft-tissue incompetence, infection, malalignment, problems with extensor mechanisms, and substantial pain of uncertain etiology.

Despite there being several complex factors that can lead to worse outcomes with revision TKAs, surgeons are expected to produce results equivalent to those of primary TKAs. It is therefore imperative to delineate the objective and subjective outcomes of revision techniques to identify areas in need of improvement. In this article, we provide a concise overview of revision TKA outcomes in order to stimulate manufacturers, surgeons, and hospitals to improve on implant designs, surgical techniques, and care guidelines for revision TKA. We review the evidence on 5 points: aseptic survivorship, functional outcomes, patient satisfaction, quality of life (QOL), and economic impact. In addition, we compare available outcome data for revision and primary TKAs.

Aseptic survivorship

Fehring and colleagues¹² in 2001 and Sharkey and colleagues¹³ in 2002 evaluated mechanisms of failure for revision TKA and reported many failures resulted from infection or were associated with the implant, and occurred within 2 years after the primary procedure. More recently, Dy and colleagues¹⁴ found the most common reason for revision was aseptic loosening, followed by infection. The present review focuses on aseptic femoral and tibial revision.

The failure rate for revision TKA is substantially higher than for primary TKA with the same type of prosthesis because of the complexity of the revision procedure, the increasing constraint of the implant design, and the higher degree of bone loss. (Appendix 1 lists risk factors for revision surgery. Appendix 2 is a complete list of survivorship outcomes of revision TKA. Both are available online at www.amjorthopedics.com.)

Sheng and colleagues¹⁵ in 2006 and Koskinen and colleagues¹⁶ in 2008 analyzed Finnish Arthroplasty Register data to determine failure rates for revision and primary TKA. Sheng

and colleagues¹⁵ examined survivorship of 2637 revision TKAs (performed between 1990 and 2002) for all-cause endpoints after first revision procedure. Survivorship rates were 89% (5 years) and 79% (10 years), while Koskinen and colleagues¹⁶ noted all-cause survival rates of 80% at 15 years. More recently, in 2013, the New Zealand Orthopaedic Association¹⁷ analyzed New Zealand Joint Registry data for revision and re-revision rates (rates of revision per 100 component years) for 64,556 primary TKAs performed between 1999 and 2012. During the period studied, 1684 revisions were performed, reflecting a 2.6% revision rate, a 0.50% rate of revision per 100 component years, and a 13-year Kaplan-Meier survivorship of 94.5%. The most common reasons for revision were pain, deep infection, and tibial component loosening (**Table 1**).

Posterior stabilized implants

Laskin and Ohnsorge¹⁸ retrospectively reviewed the cases of 58 patients who underwent unilateral revision TKA (with a posterior stabilized implant), of which 42% were for coronal instability and 44% for a loose tibial component. At minimum 4-year follow-up, 52 of the 58 patients had anteroposterior instability of less than 5 mm. In addition, 5 years after surgery, aseptic survivorship was 96%. Meijer and colleagues¹⁹ conducted a retrospective comparative study of 69 revision TKAs (65 patients) in which 9 knees received a primary implant and 60 received a revision implant with stems and augmentation (60 = 37 posterior stabilized, 20 constrained, 3 rotating hinge). Survival rates for the primary implants were 100% (1 year), 73% (2 years), and 44% (5 years), and survival rates for

Study	Year	ТКА Туре	Registry	Knees, N	Aseptic Survivorship, y	% Survival
Sheng et al ¹⁵	2006	Revision	Finland	2637	5	89
					10	79
Koskinen et al ¹⁶	2008	Primary	Finland	48,607	10	90
					15	80
Registry report ¹⁷	2013	Revision	New Zealand	1684	13	79
		Primary		64,556		95
Registry report ⁷¹	2014	Revision	Australia	1358	1	4.8ª
					3	12.4ª
					5	16.6ª
					10	18.9ª
					12	22.8ª
Registry report ⁷²	2013	Primary	Australia	342,574	1	1 ^a
					3	2.8ª
					5	3.8ª
					10	5.5ª
					12	6.5ª

Table 1. Studies of Survivorship From National Joint Registries

Abbreviation: TKA, total knee arthroplasty. aRevision rate.

Table 2. Studies of Aseptic Survivorship of Posterior Stabilized Prostheses in Revision Total Knee Arthroplasty

Study	Year	Implant Type	Knees, N	Aseptic Survivorship, y	% Survival
Meijer et al ¹⁹	2013	PS	69	1	96
				2	89
				5	85
Lee et al ⁴⁸	2012	PS	42	8	83.1
		RH	79		93
Greene et al ⁵⁶	2013	PS	119	5	100
Laskin & Ohnsorge ¹⁸	2005	PS	58	5	100
Dalury & Adams ⁵⁷	2012	PS	26	6	100
Whaley et al58	2003	PS	38	10	95.7
Mabry et al ⁵³	2007	PS	37	10	91.8

Abbreviations: PS, posterior stabilized; RH, rotating hinge.

the revision implants were significantly better: 95% (1 year), 92% (2 years), and 92% (5 years) (hazard ratio, 5.87; P = .008). The authors therefore indicated that it was unclear whether using a primary implant should still be an option in revision TKA and, if it is used, whether it should be limited to less complex situations in which bone loss and ligament damage are minimal (**Table 2**).

Constrained and semiconstrained implants

In a study of 234 knees (209 patients) with soft-tissue deficiency, Wilke and colleagues²⁰ evaluated the long-term survivorship of revision TKA with use of a semiconstrained modular fixed-bearing implant system. Overall Kaplan-Meier survival rates were 91% (5 years) and 81% (10 years) at a mean followup of 9 years. When aseptic revision was evaluated, however, the survival rates increased to 95% (5 years) and 90% (10 years). The authors noted that male sex was the only variable that significantly increased the risk for re-revision (hazard ratio, 2.07; P = .02), which they attributed to potentially higher activity levels. In 2006 and 2011, Lachiewicz and Soileau^{21,22} evaluated the survival of first- and second-generation constrained condylar prostheses in primary TKA cases with severe valgus deformities, incompetent collateral ligaments, or severe flexion contractures. Of the 54 knees (44 patients) with firstgeneration prostheses, 42 (34 patients) had a mean follow-up

of 9 years (range, 5-16 years). Ten-year survival with failure, defined as component revision for loosening, was 96%. The 27 TKAs using second-generation prostheses had a mean follow-up of about 5 years (range, 2-12 years). At final follow-up, there were no revisions for loosening or patellar problems, but 6 knees (22%) required lateral retinacular release of the patella (**Table 3**).

Rotating hinge implants

Neumann and colleagues²³ evaluated the clinical and radiographic outcomes of 24 rotating hinge prostheses used for aseptic loosening with substantial bone loss and collateral ligament instability. At a mean follow-up of 56 months (range, 3-5 years), there was no evidence of loosening of any implants, and nonprogressive radiolucent lines were found in only 2 tibial components. Kowalczewski and colleagues²⁴ evaluated the clinical and radiologic outcomes of 12 primary TKAs using a rotating hinge knee prosthesis at a minimum follow-up of 10 years. By most recent follow-up, no implants had been revised for loosening, and only 3 had nonprogressive radiolucent lines (**Table 4**).

Endoprostheses (modular segmental implants)

In a systematic review of 9 studies, Korim and colleagues²⁵ evaluated 241 endoprostheses used for limb salvage under

Study	Year	Implant Type	Knees, N	Aseptic Survivorship, y	% Survival
Hartford et al ²⁹	1998	ССК	17 (primary) 16 (revisions)	5 5	100 87.5
Bae et al ⁴⁹	2013	CCK	224	10	94.6
Friedman et al ⁵⁹	1990	CCK	137	5	97.1
Wilke et al ²⁰	2014	ССК	234	5 10	95 90
Sheng et al ⁵⁰	2005	CCK	16	5	100
Barrack et al ⁶⁰	2000	RH CCK	14 87	5 5	100 100
Christensen et al ⁶¹	2002	CCK	11	3	90.9
Garcia et al ⁶²	2010	CCK	45	5	74
Patil et al63	2010	CCK	45	3	100
Luque et al ⁶⁴	2014	ССК	125	2 5 8	92.7 87.8 87.8
Sheng et al ¹⁵	2006	CCK	71	6	95.7
Hwang et al ³¹	2010	PS CCK RH	8 25 13	2	100 100 73
Lachiewicz & Soileau ^{21,22}	2006 2011	First-generation CCK Second-generation CCK	54 27	10 5	96 100

 Table 3. Studies of Aseptic Survivorship of Condylar Constrained Prostheses in Revision Total Knee

 Arthroplasty

Abbreviations: CCK, condylar constrained knee; PS, posterior stabilized; RH, rotating hinge

nononcologic conditions. Mean follow-up was about 3 years (range, 1-5 years). The devices were used to treat various conditions, including periprosthetic fracture, bone loss with aseptic loosening, and ligament insufficiency. The overall reoperation rate was 17% (41/241 cases). Mechanical failures were less frequent (6%-19%) (Table 5).

Functional outcomes

The goal in both primary and revision TKA is to restore the function and mobility of the knee and to alleviate pain. Whereas primary TKAs are realistically predictable and reproducible in their outcomes, revision TKAs are vastly more complicated, which can result in worse postoperative outcomes and function. In addition, revision TKAs may require extensive surgical exposure, which causes more tissue and muscle damage, prolonging rehabilitation. (Appendix 3 is a complete list of studies of functional outcomes of revision TKA, which is available online at www. amjorthopedics.com.)

This discrepancy in functional outcomes between primary and revision TKA begins as early as the postoperative inpatient rehabilitation period. Using the functional independence measurement (FIM), which estimates performance of activities of daily living, mobility, and cognition, Vincent and colleagues²⁶ evaluated the functional improvement produced by revision versus primary TKA during inpatient rehabilitation. They compared 424 consecutive primary TKAs with 138 revision TKAs. For both groups, FIM scores increased significantly (P = .015) between admission and discharge. On discharge, however, FIM scores were significantly (P = .01) higher for

Table 4. Studies of Aseptic Survivorship of Rotating Hinge Prostheses in Revision Total KneeArthroplasty

Study	Year	Implant Type	Knees, N	Aseptic Survivorship, y	% Survival
Gudnason et al ⁵⁴	2011	RH	42	10	89.2
Baier et al ²⁸	2013	RH	78	5	94
Bistolfi et al65	2012	RH	31	5	78.6
Bottner et al ⁶⁶	2006	RH PS CCK	2 1 30	5	94
Jensen et al ⁶⁷	2014	RH CCK	16 14	4	96.3
Howard et al ⁶⁸	2011	CCK RH PS	11 10 3	3	100
Lee et al ⁴⁸	2013	PS RH	42 79	8	83.1 93
Hwang et al ³¹	2010	PS	8	2	100
		CCK BH	25 13		100
			10		73
Yang et al ⁶⁹	2012	RH	40	10	87
Neumann et al ²³	2012	RH	24	4.5	100
Kowalczewski et al ²⁴	2014	RH	12	10	100

Abbreviations: CCK, condylar constrained knee; PS, posterior stabilized; RH, rotating hinge.

Table 5. Studies of Aseptic Survivorship of Tumor Prostheses in Revision Total Knee Arthroplasty^a

Study	Year	Knees, N	Aseptic Survivorship, y	% Survival
Korim et al ²⁵	2013	241	3.3	83
Hofmann et al55	2005	89	10	98.9
Peters et al ⁷⁰	2009	184	10	99.5
Haas et al ⁵²	1995	76	8	98.7

^aAll implants were modular segmental.

the primary group than the revision group (29 and 27 points, respectively). Furthermore, in the evaluation of mechanisms of failure, patients who had revision TKA for mechanical or pain-related problems did markedly better than those who had revision TKA for infection.

Compared with primary knee implants, revision implants require increasing constraint. We assume increasing constraint affects knee biomechanics, leading to worsening functional outcomes. In a study of 60 revision TKAs (57 patients) using posterior stabilized, condylar constrained, or rotating hinge prostheses, Vasso and colleagues²⁷ examined functional outcomes at a median follow-up of 9 years (range, 4-12 years). At most recent follow-up, mean International Knee Society (IKS) Knee and Function scores were 81 (range, 48-97) and 79 (range, 56-92), mean Hospital for Special Surgery (HSS) score was 84 (range, 62-98), and mean range of motion (ROM) was 121° (range, 98° - 132°) (P < .001). Although there were no significant differences in IKS and HSS scores between prosthesis types, ROM was significantly (P < .01) wider in the posterior stabilized group than in the condylar constrained and rotating hinge groups (127° vs 112° and 108°), suggesting increasing constraint resulted in decreased ROM. Several studies have found increasing constraint might lead to reduced function.²⁸⁻³⁰

However, Hwang and colleagues³¹ evaluated functional outcomes in 36 revision TKAs and noted that the cemented posterior stabilized (n = 8), condylar constrained (n = 25), and rotating hinge (n = 13) prostheses used did not differ in their mean Knee Society scores (78, 81, and 83, respectively).

There remains a marked disparity in patient limitations seen after revision versus primary TKA. Given the positive results being obtained with newer implants, studies might suggest recent generations of prostheses have allowed designs to be comparable. As design development continues, we may come closer to achieving outcomes comparable to those of primary TKA.

Patient satisfaction

Several recent reports have shown that 10% to 25% of patients who underwent primary TKA were dissatisfied with their surgery^{30,32}; other studies have found patient satisfaction often correlating to function and pain.³³⁻³⁵ Given the worse outcomes for revision TKA (outlined in the preceding section), the substantial pain accompanying a second, more complex procedure, and the extensive rehabilitation expected, we suspect patients who undergo revision TKA are even less satisfied with their surgery than their primary counterparts are. (See **Appendix 4** for a complete list of studies of patient satisfaction after revision TKA, which is available online at www.amjorthopedics.com.)

Barrack and colleagues³² evaluated a consecutive series of 238 patients followed up for at least 1 year after revision TKA. Patients were asked to rate their degree of satisfaction with both their primary procedure and the revision and to indicate their expectations regarding their revision prosthesis. Mean satisfaction score was 7.4 (maximum = 10), with 13% of patients dissatisfied, 18% somewhat satisfied, and 69% satisfied.

Seventy-four percent of patients expected their revision prosthesis to last longer than the primary prosthesis.

Greidanus and colleagues³⁶ evaluated patient satisfaction in 60 revision TKA cases and 199 primary TKA cases at 2-year follow-up. The primary TKA group had significantly (P < .01) higher satisfaction scores in a comparison with the revision TKA group: Global (86 vs 73), Pain Relief (88 vs 70), Function (83 vs 67), and Recreation (77 vs 62). These findings support the satisfaction rates reported by Dahm and colleagues^{33,34}: 91% for primary TKA patients and 77% for revision TKA patients.

Quality of life

Procedure complexity leads to reduced survivorship, function, and mobility, longer rehabilitation, and decreased QOL for revision TKA patients relative to primary TKA patients.³⁷ (See **Appendix 5** for a complete list of studies of QOL outcomes of revision TKA, which is available online at www.amjorthopedics.com.)

Greidanus and colleagues³⁶ evaluated joint-specific QOL (using the 12-item Oxford Knee Score; OKS) and generic QOL (using the 12-Item Short Form Health Survey; SF-12) in 60 revision TKA cases and 199 primary TKA cases at a mean followup of 2 years. (The OKS survey is used to evaluate patient perspectives on TKA outcomes,³⁸ and the multipurpose SF-12 questionnaire is used to assess mental and physical function and general health-related QOL.³⁹) Compared with the revision TKA group, the primary TKA group had significantly higher OKS after surgery (78 vs 68; P = .01) as well as significantly higher SF-12 scores: Global (84 vs 72; P = .01), Mental (54 vs 50; P = .03), and Physical (43 vs 37; P = .01). Similarly, Ghomrawi and colleagues⁴⁰ evaluated patterns of improvement in 308 patients (318 knees) who had revision TKA. At 24-month follow-up, mean SF-36 Physical and Mental scores were 35 and 52, respectively.

Deehan and colleagues⁴¹ used the Nottingham Health Profile (NHP) to compare 94 patients' health-related QOL scores before revision TKA with their scores 3 months, 1 year, and 5 years after revision. NHP Pain subscale scores were significantly lower 3 and 12 months after surgery than before surgery, but this difference was no longer seen at the 5-year follow-up. There was no significant improvement in scores on the other 5 NHP subscales (Sleep, Energy, Emotion, Mobility, Social Isolation) at any time points.

As shown in the literature, patients' QOL outcomes improve after revision TKA, but these gains are not at the level of patients who undergo primary TKA.^{36,41} Given that revision surgery is more extensive, and that perhaps revision patients have poorer muscle function, they usually do not return to the level they attained after their index procedure.

Economic impact

Consistent with the outcomes already described, the economic impact of revision TKAs is excess expenditures and costs to patients and health care institutions.⁴² The sources of this impact are higher implant costs,

extra operative trays and times, longer hospital stays, more rehabilitation, and increased medication use.⁴³ Revision TKA costs range from \$49,000 to more than \$100,000—a tremendous increase over primary TKA costs (\$25,000-\$30,000).⁴³⁻⁴⁵ Furthermore, the annual economic burden associated with revision TKA, now \$2.7 billion, is expected to exceed \$13 billion by 2030.⁴⁶ In the United States, about \$23.2 billion will be spent on 926,527 primary TKAs in 2015; significantly, the costs associated with revising just 10% of these cases account for almost 50% of the total cost of the primary procedures.⁴⁶

In a retrospective cost-identification multicenter cohort study, Bozic and colleagues⁴⁷ found that both-component and singlecomponent revisions, compared with primary procedures, were associated with significantly increased operative time (~265 and 221 minutes vs 200 minutes), use of allograft bone (23% and 14% vs 1%), length of stay (5.4 and 5.7 days vs 5.0 days), and percentage of patients discharged to extended-care facilities (26% and 26% vs 25%) (P < .0001). Hospital costs for both- and single-component revisions were 138% and 114% higher than costs for primary procedures (P < .0001). More recently, Kallala and colleagues⁴⁴ analyzed UK National Health Service data and compared the costs of revision for infection with revision for other causes (pain, instability, aseptic loosening, fracture). Mean length of stay associated with revision for infection (21.5 days) was more than double that associated with revision for aseptic loosening (9.5 days; P < .0001), and mean cost of revision for septic causes (£30,011) was more than 3 times that of revision for other causes (£9655; P < .0001). The authors concluded that the higher costs of revision knee surgery have a considerable economic impact, especially in infection cases.

With more extensive procedures, long-stem or more constrained prostheses are often needed to obtain adequate fixation and stability. The resulting increased, substantial economic burden is felt by patients and the health care system. Given that health care reimbursements are declining, hospitals that perform revision TKAs can sustain marked financial losses. Some centers are asking whether it is cost-effective to continue to perform these types of procedures. We must find new ways to provide revision procedures using less costly implants and tools so that centers will continue to make these procedures available to patients.

Conclusion

Given the exponential growth in primary TKAs, there will be a concordant increase in revision TKAs in the decades to come. This review provides a concise overview of revision TKA outcomes. Given the low level of evidence regarding revision TKAs, we need further higher quality studies of their prostheses and outcomes. Specifically, we need systematic reviews and meta-analyses to provide higher quality evidence regarding outcomes of using individual prosthetic designs.

References

- Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA. 2012;308(12):1227-1236.
- 2. Crowninshield RD, Rosenberg AG, Sporer SM. Changing demographics

of patients with total joint replacement. *Clin Orthop Relat Res.* 2006;443: 266-272.

- Ravi B, Croxford R, Reichmann WM, Losina E, Katz JN, Hawker GA. The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007. *Best Pract Res Clin Rheumatol*. 2012;26(5):637-647.
- Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. *J Bone Joint Surg Am.* 2007;89(4):780-785.
- Kurtz SM, Ong KL, Schmier J, Zhao K, Mowat F, Lau E. Primary and revision arthroplasty surgery caseloads in the United States from 1990 to 2004. J Arthroplasty. 2009;24(2):195-203.
- Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. *Clin Orthop Relat Res.* 2009;467(10):2606-2612.
- Bryan RS, Rand JA. Revision total knee arthroplasty. *Clin Orthop Relat Res.* 1982;170:116-122.
- Rand JA, Bryan RS. Revision after total knee arthroplasty. Orthop Clin North Am. 1982;13(1):201-212.
- Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total knee arthroplasty in the United States. *Clin Orthop Relat Res*. 2010;468(1):45-51.
- Parvizi J, Nunley RM, Berend KR, et al. High level of residual symptoms in young patients after total knee arthroplasty. *Clin Orthop Relat Res.* 2014;472(1):133-137.
- Ali A, Sundberg M, Robertsson O, et al. Dissatisfied patients after total knee arthroplasty: a registry study involving 114 patients with 8-13 years of followup. *Acta Orthop.* 2014;85(3):229-233.
- Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M. Early failures in total knee arthroplasty. *Clin Orthop Relat Res*. 2001;392:315-318.
- Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today? *Clin Orthop Relat Res*. 2002;404:7-13.
- Dy CJ, Marx RG, Bozic KJ, Pan TJ, Padgett DE, Lyman S. Risk factors for revision within 10 years of total knee arthroplasty. *Clin Orthop Relat Res.* 2014;472(4):1198-1207.
- Sheng PY, Konttinen L, Lehto M, et al. Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish Arthroplasty Registry. *J Bone Joint Surg Am*. 2006;88(7):1425-1430.
- Koskinen E, Eskelinen A, Paavolainen P, Pulkkinen P, Remes V. Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total knee arthroplasty in patients with primary osteoarthritis: a follow-up study of 50,493 knee replacements from the Finnish Arthroplasty Register. *Acta Orthop.* 2008;79(4):499-507.
- New Zealand Orthopaedic Association. The New Zealand Joint Registry Fourteen Year Report (January 1999 to December 2012). http://www.nzoa. org.nz/system/files/NJR%2014%20Year%20Report.pdf. Published November 2013. Accessed December 16, 2015.
- Laskin RS, Ohnsorge J. The use of standard posterior stabilized implants in revision total knee arthroplasty. *Clin Orthop Relat Res*. 2005;(440):122-125.
- Meijer MF, Reininga IH, Boerboom AL, Stevens M, Bulstra SK. Poorer survival after a primary implant during revision total knee arthroplasty. *Int Orthop.* 2013;37(3):415-419.
- Wilke BK, Wagner ER, Trousdale RT. Long-term survival of semi-constrained total knee arthroplasty for revision surgery. J Arthroplasty. 2014;29(5): 1005-1008.
- Lachiewicz PF, Soileau ES. Ten-year survival and clinical results of constrained components in primary total knee arthroplasty. *J Arthroplasty*. 2006;21(6):803-808.
- Lachiewicz PF, Soileau ES. Results of a second-generation constrained condylar prosthesis in primary total knee arthroplasty. *J Arthroplasty*. 2011;26(8):1228-1231.
- Neumann DR, Hofstaedter T, Dorn U. Follow-up of a modular rotating hinge knee system in salvage revision total knee arthroplasty. J Arthroplasty. 2012;27(5):814-819.
- Kowalczewski J, Marczak D, Synder M, Sibinski M. Primary rotating-hinge total knee arthroplasty: good outcomes at mid-term follow-up. J Arthroplasty. 2014;29(6):1202-1206.
- Korim MT, Esler CN, Reddy VR, Ashford RU. A systematic review of endoprosthetic replacement for non-tumour indications around the knee joint. *Knee*. 2013;20(6):367-375.
- Vincent KR, Vincent HK, Lee LW, Alfano AP. Inpatient rehabilitation outcomes in primary and revision total knee arthroplasty patients. *Clin Orthop Relat Res.* 2006;(446):201-207.
- 27. Vasso M, Beaufils P, Schiavone Panni A. Constraint choice in revision knee

arthroplasty. Int Orthop. 2013;37(7):1279-1284.

- Baier C, Luring C, Schaumburger J, et al. Assessing patient-oriented results after revision total knee arthroplasty. J Orthop Sci. 2013;18(6):955-961.
- Hartford JM, Goodman SB, Schurman DJ, Knoblick G. Complex primary and revision total knee arthroplasty using the condylar constrained prosthesis: an average 5-year follow-up. *J Arthroplasty*. 1998;13(4):380-387.
- Haidukewych GJ, Jacofsky DJ, Pagnano MW, Trousdale RT. Functional results after revision of well-fixed components for stiffness after primary total knee arthroplasty. J Arthroplasty. 2005;20(2):133-138.
- Hwang SC, Kong JY, Nam DC, et al. Revision total knee arthroplasty with a cemented posterior stabilized, condylar constrained or fully constrained prosthesis: a minimum 2-year follow-up analysis. *Clin Orthop Surg.* 2010;2(2):112-120.
- Barrack RL, McClure JT, Burak CF, Clohisy JC, Parvizi J, Sharkey P. Revision total knee arthroplasty: the patient's perspective. *Clin Orthop Relat Res.* 2007;464:146-150.
- Dahm DL, Barnes SA, Harrington JR, Berry DJ. Patient reported activity after revision total knee arthroplasty. J Arthroplasty. 2007;22(6 suppl 2):106-110.
- Dahm DL, Barnes SA, Harrington JR, Sayeed SA, Berry DJ. Patient-reported activity level after total knee arthroplasty. *J Arthroplasty*. 2008;23(3):401-407.
- Richards CJ, Garbuz DS, Pugh L, Masri BA. Revision total knee arthroplasty: clinical outcome comparison with and without the use of femoral head structural allograft. *J Arthroplasty*. 2011;26(8):1299-1304.
- Greidanus NV, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary total knee arthroplasty. *J Arthroplasty*. 2011;26(4):615-620.
- Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster JY. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am. 2004;86(5):963-974.
- Murray DW, Fitzpatrick R, Rogers K, et al. The use of the Oxford hip and knee scores. J Bone Joint Surg Br. 2007;89(8):1010-1014.
- Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. *Med Care*. 1996;34(3):220-233.
- Ghomrawi HM, Kane RL, Eberly LE, Bershadsky B, Saleh KJ; North American Knee Arthroplasty Revision Study Group. Patterns of functional improvement after revision knee arthroplasty. *J Bone Joint Surg Am*. 2009;91(12):2838-2845.
- Deehan DJ, Murray JD, Birdsall PD, Pinder IM. Quality of life after knee revision arthroplasty. Acta Orthop. 2006;77(5):761-766.
- Kapadia BH, McElroy MJ, Issa K, Johnson AJ, Bozic KJ, Mont MA. The economic impact of periprosthetic infections following total knee arthroplasty at a specialized tertiary-care center. J Arthroplasty. 2014;29(5):929-932.
- Bhandari M, Smith J, Miller LE, Block JE. Clinical and economic burden of revision knee arthroplasty. *Clin Med Insights Arthritis Musculoskelet Disord*. 2012;5:89-94.
- Kallala RF, Vanhegan IS, Ibrahim MS, Sarmah S, Haddad FS. Financial analysis of revision knee surgery based on NHS tariffs and hospital costs: does it pay to provide a revision service? *Bone Joint J Br.* 2015;97(2):197-201.
- Ong KL, Mowat FS, Chan N, Lau E, Halpern MT, Kurtz SM. Economic burden of revision hip and knee arthroplasty in Medicare enrollees. *Clin Orthop Relat Res.* 2006;446:22-28.
- Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am. 2014;96(8):624-630.
- Bozic KJ, Durbhakula S, Berry DJ, et al. Differences in patient and procedure characteristics and hospital resource use in primary and revision total joint arthroplasty: a multicenter study. J Arthroplasty. 2005;20(7 suppl 3):17-25.
- Lee KJ, Moon JY, Song EK, Lim HA, Seon JK. Minimum Two-year Results of Revision Total Knee Arthroplasty Following Infectious or Non-infectious Causes. *Knee Surg Relat Res.* 2012;24(4):227-234.
- 49. Bae DK, Song SJ, Heo DB, Lee SH, Song WJ. Long-term survival rate of

implants and modes of failure after revision total knee arthroplasty by a single surgeon. J Arthroplasty. 2013;28(7):1130-1134.

- Sheng PY, Jämsen E, Lehto MU, Konttinen YT, Pajamäki J, Halonen P. Revision total knee arthroplasty with the Total Condylar III system in inflammatory arthritis. J Bone Joint Surg Br. 2005;87(9):1222-1224.
- Lachiewicz PF, Soileau ES. Ten-year survival and clinical results of constrained components in primary total knee arthroplasty. *J Arthroplasty*. 2006;21(6):803-808.
- Haas SB, Insall JN, Montgomery W 3rd, Windsor RE. Revision total knee arthroplasty with use of modular components with stems inserted without cement. J Bone Joint Surg Am. 1995;77(11):1700-1707.
- Mabry TM, Vessely MB, Schleck CD, Harmsen WS, Berry DJ. Revision total knee arthroplasty with modular cemented stems: long-term follow-up. J Arthroplasty. 2007;22(6 Suppl 2):100-105.
- Gudnason A, Milbrink J, Hailer NP. Implant survival and outcome after rotating-hinge total knee revision arthroplasty: a minimum 6-year follow-up. *Arch Orthop Trauma Surg.* 2011;131(11):1601-1607.
- Hofmann AA, Goldberg T, Tanner AM, Kurtin SM. Treatment of infected total knee arthroplasty using an articulating spacer: 2- to 12-year experience. *Clin Orthop Relat Res*. 2005;430:125-131.
- Greene JW, Reynolds SM, Stimac JD, Malkani AL, Massini MA. Midterm results of hybrid cement technique in revision total knee arthroplasty. J Arthroplasty. 2013;28(4):570-574.
- Dalury DF, Adams MJ. Minimum 6-year follow-up of revision total knee arthroplasty without patella reimplantation. *Journal Arthroplasty*. 2012;27(8 Suppl):91-94.
- Whaley AL, Trousdale RT, Rand JA, Hanssen AD. Cemented long-stem revision total knee arthroplasty. J Arthroplasty. 2003;18(5):592-599.
- Friedman RJ, Hirst P, Poss R, Kelley K, Sledge CB. Results of revision total knee arthroplasty performed for aseptic loosening. *Clinical Orthop Relat Res.* 1990;255:235-241.
- Barrack RL, Rorabeck C, Partington P, Sawhney J, Engh G. The results of retaining a well-fixed patellar component in revision total knee arthroplasty. *J Arthroplasty.* 2000;15(4):413-417.
- Christensen CP, Crawford JJ, Olin MD, Vail TP. Revision of the stiff total knee arthroplasty. J Arthroplasty. 2002;17(4):409-415.
- Garcia RM, Hardy BT, Kraay MJ, Goldberg VM. Revision total knee arthroplasty for aseptic and septic causes in patients with rheumatoid arthritis. *Clin Orthop Relat Res.* 2010;468(1):82-89.
- Patil N, Lee K, Huddleston JI, Harris AH, Goodman SB. Aseptic versus septic revision total knee arthroplasty: patient satisfaction, outcome and quality of life improvement. *Knee*. 2010;17(3):200-203.
- Luque R, Rizo B, Urda A, et al. Predictive factors for failure after total knee replacement revision. *Int Orthop*. 2014;38(2):429-435.
- Bistolfi A, Massazza G, Rosso F, Crova M. Rotating-hinge total knee for revision total knee arthroplasty. *Orthopedics*. 2012;35(3):e325-e330.
- Bottner F, Laskin R, Windsor RE, Haas SB. Hybrid component fixation in revision total knee arthroplasty. *Clin Orthop Relat Res.* 2006;446:127-131.
- Jensen CL, Winther N, Schroder HM, Petersen MM. Outcome of revision total knee arthroplasty with the use of trabecular metal cone for reconstruction of severe bone loss at the proximal tibia. *Knee*. 2014;21(6):1233-1237.
- Howard JL, Kudera J, Lewallen DG, Hanssen AD. Early results of the use of tantalum femoral cones for revision total knee arthroplasty. *J Bone Joint Surg Am.* 2011;93(5):478-484.
- Yang JH, Yoon JR, Oh CH, Kim TS. Hybrid component fixation in total knee arthroplasty: minimum of 10-year follow-up study. *J Arthroplasty*. 2012;27(6):1111-1118.
- Peters CL, Erickson JA, Gililland JM. Clinical and radiographic results of 184 consecutive revision total knee arthroplasties placed with modular cementless stems. *J Arthroplasty*. 2009;24(6 Suppl):48-53.
- 71. Registry AOANJR. Hip and Knee Arthroplasty. Annual Report 2014. 2014.
- 72. Registry AOANJR. Hip and Knee Arthroplasty. Annual Report 2013. 2013.

Appendix 1. Risk Factors

Study	Year	Risk Factors
Dy et al ¹	2014	Younger age
		Male sex
		Black race
		Lower hospital volume
Singh & Lewallen ²	2014	For limits to activities of daily living
-		Dislocation
		Fracture nonunion
Singh et al ³	2010	For functional limits
-		Body mass index higher than 40
		Female sex
		Age over 80 years
Namba et al ⁴	2013	Diabetes
		Bilateral procedures
		High-flexion implants
		LCS (Low Contact Stress) mobile bearing knee system
		Younger age
		Black race

Appendix 2. Literature on All-Cause Survivorship Outcomes of Revision Total Knee Arthroplasty

Study	Year	ТКА Туре	Knees, N	Mean (Range) Follow-Up, mo	Survivorship, y	% Survival
Sanguineti et al⁵	2014	Primary Revision	25 20	42.2 (20-128) 42.2 (20-128)	5 5	96 95
Tibrewal et al6	2014	Revision	50	126 (24-288)	10	98
Gudnason et al ⁷	2011	Revision	42	106 (72-216)	10	65.1
Hartford et al ⁸	1998	Primary Revision	17 16	60 (24-120)	5 5	100 81.3
Baier et al ⁹	2013	Revision	78	81 (60-108)	5	74
Bachmann et al ¹⁰	2014	Revision	159	132 (12-228)	10	97.7
Hofmann et al ¹¹	2005	Revision	89	99 (24-197)	10	89
Greene et al ¹²	2013	Revision	119	62 (46-80)	5	97.5
Bae et al ¹³	2013	Revision	224	97 (24-229)	5 8 10	97.2 91.6 86.1
Laskin & Ohnsorge ¹⁴	2005	Revision	58	48 (49-98)	5	96.6
Peters et al ¹⁵	2009	Revision	184	49 (24-132)	10	91.8
Friedman et al ¹⁶	1990	Revision	137	62 (24-140)	5	94.2
Wilke et al ¹⁷	2014	Revision	234	108 (2-213)	5 10	91 81
Bistolfi et al ¹⁸	2012	Revision	31	60 (32-100)	5	70.1
Haas et al ¹⁹	1995	Revision	67	42 (24-108)	8	83
Barrack et al ²⁰	2000	Revision	103	51 (24-72)	5	100
Dalury & Adams ²¹	2012	Revision	26	NR (72-132)	6	100
Mabry et al ²²	2007	Revision	73	122 (33-187)	10	91.8
Whaley et al ²³	2003	Revision	38	121 (NR)	10	96.7
Bottner et al ²⁴	2006	Revision	33	38 (24-109)	5	90.9
Sheng et al ²⁵	2006	Revision	71	71 (36-125)	5 8	95 94
Hwang et al ²⁶	2010	Revision	36	30 (24-100)	3	86.1
Garcia et al ²⁷	2010	Revision	45	NR (24-108)	5	76.8
Rajgopal et al ²⁸	2013	Revision, septic Revision, aseptic Revision, septic Revision, aseptic Revision, septic Bevision, aseptic	65 77 65 77 65 77	72 (31-118) 75 (30-119) 72 (31-118) 75 (30-119) 72 (31-118) 75 (30-119)	3 3 5 5 8 8	93 90 88 88 88 80 77

Abbreviations: NR, not reported; TKA, total knee arthroplasty.

	Value Value							
Study	Year	ТКА Туре	Knees, N	Follow-Up, mo	Metric Used	Preoperative	Postoperative	Ρ
Sanguineti et al⁵	2014	Primary	25	42.2 (20-128)	KSS	NR	86.8	.27
		Revision	20		Functional	NR	77.6	
		Primary	25		KSS	NR	95.9	.18
		Revision	20		Clinical	NR	92	
Gudnason et al ⁷	2011	Revision	42	106 (72-216)	HSS	NR	67	NR
					KSS	NR	29	NR
					Functional			
					KSS	NR	85	NR
					Clinical			
Hartford et al ⁸	1998	Primary	17	60 (24-120)	KSS	29	61	NR
		Revision	16		Functional	19	58	
		Primary	17		KSS	39	88	NR
		Revision	16		Clinical	37	83	
Raier et al ⁹	2013	Revision	78	81 (60-108)	KSS	NR	611	NR
Daior of al	2010	1101131011	10	01 (00 100)	Functional		01.1	
					KSS	56.9	71 3	NR
					Clinical	00.0	71.0	
					WOMAC	65	34	NR
						400	400	
Hotmann et al''	2005	Revision	89	99 (24-197)	KSS	120	188	.04
					Compined		••••••	
Greene et al ¹²	2013	Revision	119	62 (46-80)	KSS	58	79	<.05
					Function			
Haidukewych et al ²⁹	2005	Revision	16	42 (24-72)	KSS	45	58	NR
					Function			
					KSS	28	65	NR
			•••••		Cili lical			
Laskin & Ohnsorge ¹⁴	2005	Revision	58	NR (49-98)	KSS	NR	56	NR
					Function		96	
					KSS		00	
	•••••		•••••		Ginica			
Peters et al ¹⁵	2009	Revision	184	49 (24-132)	KSS	63	82	<.05
					FUNCTION	70	95	< 05
					Clinical	12	00	<.05
	•••••		•••••					
Ghomrawi et al ³⁰	2009	Revision	221	24 minimum (NR)	WOMAC	10.1	6.14	.01
						4.26	3 12	01
					Stiffness	4.20	0.12	.01
					WOMAC	34.78	23.84	.01
					Function			
					LEAS	7.53	8.67	.01
Greidanus et al ³¹	2011	Primary	199	24 minimum (NR)	WOMAC	50.5	80.2	.01
		Revision	60			43.3	69.1	
		Primary	199		OKS	44	78.3	.01
		Revision	60			34.9	68.4	
					KSS	37.7	48.9	<.01
					Clinical			
					OKS	38.4	28.8	<.001
Bistolfi et al18	2012	Revision	31	60 (32-100)	HSS	65.5	88.4	.00006
Haas ot al ¹⁹	1005	Revision	76	/2/ (21_1∩Q)	ЦСС	٨Q	76	
ו וממש בו מו	1990		10	+2 (24=100)		ب ں	10	

Appendix 3. Literature on Functional Outcomes of Revision Total Knee Arthroplasty

Continued on page A4

Outcomes and Aseptic Survivorship of Revision Total Knee Arthroplasty

Appendix 3. Litera	ture on F	'unctional Oเ	itcome	s of Revision To	otal Knee Art	hroplasty	(continued)	
Richards et al ³²	2011	Revision with graft	24	48 (24-98)	WOMAC	NR	79	.004
		Revision	48	38 (24-63)		NR	62	
		without graft Revision	24	48 (24-98)	OKS	NR	80	.001
		with graft Revision	48	38 (24-63)		NR	63	
		without graft	24	48 (24-98)	UCLA Activity	NR	4.9	.052
		with graft Revision without graft	48	38 (24-63)		NR	4	
Dalury & Adams ²¹	2012	Revision	26	NR (72-132)	KSS Eurotion	50	93	NR
					KSS Pain	30	45	NR
Mabry et al ²²	2007	Revision	73	122 (33-187)	KSS Function	46	46	NR
					KSS Clinical	58	85	NR
Whaley et al ²³	2003	Revision	38	121 (NR)	KSS Function	48.1	56.9	NR
					KSS Clinical	16.5	51	NR
Dahm et al ³³	2008	Primary	1630	69 (24-120)	UCLA Activity	NR	7.1	NR
Christensen et al ³⁴	2002	Revision	11	38 (24-53)	KSS Clinical	31.1	75.5	<.001
					KSS Function	8.6	62.3	<.001
Bottner et al ²⁴	2006	Revision	33	38 (24-109)	KSS Clinical	42	83	NR
					KSS Function	48	76	NR
Jensen et al ³⁵	2014	Revision	30	47 (3-84)	KSS Clinical	42	77	<.0005
					KSS Function	19	63	<.0005
Meek et al ³⁶	2004	Revision, septic	55	24 minimum (NR)	OKS	NR	67.3	.007
		Revision, aseptic	47			NR	55.3	
		Revision, septic	55		WOMAC Function	NR	68.9	.003
		Revision, aseptic	47			NR	55.8	
		Revision, septic	55		WOMAC Pain	NR	77.1	.007
		Revision, aseptic	47			NR	64.8	
		Revision, septic	55		WOMAC Stiffness	NR	70.2	.005
		Revision, aseptic	47			NR	56.3	
Dahm et al ³⁷	2007	Revision	335	67 (36-108)	UCLA Activity	NR	6.7	NR
					KSS Function	NR	62	NR

Continued on page A5

Sheng et al ²⁵	2006	Revision	71	36 (3-81)	KSS Clinical	44	84	<.0001
					KSS Function	30	44	<.0001
Hwang et al ²⁶	2010	Revision	36	30 (24-100)	KSS Clinical	28	83	<.001
					KSS Function	42	82	<.001
Wang et al ³⁸	2004	Revision, septic	15	49 (19-81)	KSS Clinical	51.8	77.1	.002
		Revision, aseptic	33	53 (30-77)		58.7	86.5	
		Revision, septic	15	49 (19-81)	KSS Function	36.4	71.7	.189
		Revision, aseptic	33	53 (30-77)		33	68.6	.081
		Revision, septic	15	49 (19-81)	KSS Pain	21.3	43.7	
		Revision, aseptic	33	53 (30-77)		26.5	44.2	
Howard et al ³⁹	2011	Revision	24	33 (24-50)	KSS Clinical	55	81	NR
Garcia et al ²⁷	2010	Revision, septic	18	NR (24-108)	KSS	44	75	NR
		Revision, aseptic	27		Olinica	37	75	NR
		Revision, septic	18		KSS	18	52	NR
		Revision, aseptic	27		Function	37	54	NR
Rajgopal et al ²⁸	2013	Revision, septic	65	72 (31-118)	KSS Clinical	51	69	.72
		Revision, aseptic	77	75 (30-119)		52	70	
		Revision, septic	65	72 (31-118)	KSS Function	46	65	.72
		Revision, aseptic	77	75 (30-119)		43	64	

Appendix 3. Literature on Functional Outcomes of Revision Total Knee Arthroplasty (continued)

Abbreviations: HHS, Hospital for Special Surgery; KSS, Knee Society Score; LEAS, Lower-Extremity Activity Scale; NR, not reported; OKS, 12-Item Oxford Knee Score; TKA, total knee arthroplasty; UCLA, University of California Los Angeles; VAS, visual analog scale; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

Appendix 4. Literature on Patient Satisfaction After Revision Total Knee Arthroplasty

Study	Year	ТКА Туре	Knees, N	Mean (Range) Follow-Up, mo	Satisfaction Rate, %
Barrack et al ⁴⁰	2007	Revision	238	12 minimum (NR)	69
Haidukewych et al ²⁹	2005	Revision	16	42 (24-72)	66
Richards et al ³²	2011	Revision with graft	24	48 (24-98)	93
		Revision without graft	48	38 (24-63)	71
Dahm et al ³³	2008	Primary	1630	69 (24-120)	91
Dahm et al ³⁷	2007	Revision	335	67 (36-108)	77

Abbreviations: NR, not reported; TKA, total knee arthroplasty.

Appendix 5. Literature or	Quality-of-Life	Assessment After Revisio	n Total Knee	Arthroplasty
---------------------------	-----------------	---------------------------------	--------------	--------------

Study	Year	ТКА Туре	Knees, N	Mean (Range) Follow-Up, mo	Metric Used	Value		
						Preoperative	Postoperative	Р
Ghomrawi et al ³⁰	2009	Revision	221	24 minimum (NR)	SF-36 Physical	28.37	34.76	.01
					SF-36 Mental	48.94	51.97	.02
Greidanus et al ³¹	2011	Primary	199	24 minimum (NR)	SF-36 Physical	31.6	42.6	.01
		Revision	60			29.8	37	
		Primary	199		SF-36 Mental	49.1	53.8	.03
		Revision	60			44	50.4	
Kasmire et al ⁴¹	2014	Revision	175	24 minimum (NR)	SF-36 Physical	40.7	55.5	<.001
					SF-36 Mental	60.3	70.2	<.001
Richards et al ³²	2011	Revision with graft	24	48 (24-98)	SF-12 Physical	NR	40	.027
		Revision without graft	48	38 (24-63)		NR	33	
		Revision with graft	24	48 (24-98)	SF-12 Mental	NR	52	.337
		Revision without graft	48	38 (24-63)		NR	48	
Azzam et al ⁴²	2011	Revision	68	39 (24-96))	SF-36 Physical	40	53	.0001
					SF-36 Mental	59	67	.002
Meek et al ³⁶	2004	Revision, septic	55	24 minimum (NR)	SF-12 Physical	NR	41.2	.054
		Revision, aseptic	47			NR	35.6	
		Revision, septic	55		SF-12 Mental	NR	53.7	.105
		Revision, aseptic	47			NR	49.1	

Abbreviations: NR, not reported; SF-12, 12-Item Short Form Health Survey; SF-36, 36-Item Short Form Health Survey; TKA, total knee arthroplasty.

Appendices References

- Dy CJ, Marx RG, Bozic KJ, Pan TJ, Padgett DE, Lyman S. Risk factors for revision within 10 years of total knee arthroplasty. *Clin Orthop Relat Res.* 2014;472(4):1198-1207.
- Singh JA, Lewallen DG. Increasing obesity and comorbidity in patients undergoing primary total hip arthroplasty in the U.S.: a 13-year study of time trends. *BMC Musculoskelet Disord*. 2014;15:441.
- Singh JA, O'Byrne MM, Harmsen WS, Lewallen DG. Predictors of moderatesevere functional limitation 2 and 5 years after revision total knee arthroplasty. J Arthroplasty. 2010;25(7):1091-1095, 1095.e1-e4.
- Namba RS, Cafri G, Khatod M, Inacio MC, Brox TW, Paxton EW. Risk factors for total knee arthroplasty aseptic revision. *J Arthroplasty.* 2013;28(8 Suppl):122-127.
- Sanguineti F, Mangano T, Formica M, Franchin F. Total knee arthroplasty with rotating-hinge Endo-Model prosthesis: clinical results in complex primary and revision surgery. Arch Orthop Trauma Surg. 2014;134(11):1601-1607.
- Tibrewal S, Malagelada F, Jeyaseelan L, Posch F, Scott G. Single-stage revision for the infected total knee replacement: results from a single centre. *Bone Joint J.* 2014;96-B(6):759-764.
- Gudnason A, Milbrink J, Hailer NP. Implant survival and outcome after rotating-hinge total knee revision arthroplasty: a minimum 6-year follow-up. *Arch Orthop Trauma Surg.* 2011;131(11):1601-1607.
- Hartford JM, Goodman SB, Schurman DJ, Knoblick G. Complex primary and revision total knee arthroplasty using the condylar constrained pros-

thesis: an average 5-year follow-up. J Arthroplasty. 1998;13(4):380-387.

- Baier C, Luring C, Schaumburger J, et al. Assessing patient-oriented results after revision total knee arthroplasty. *Journal of Orthopaedic Science: Official Journal of the Japanese Orthopaedic Association.* 2013;18(6):955-961.
- Bachmann M, Bolliger L, Ilchmann T, Clauss M. Long-term survival and radiological results of the Duracon total knee arthroplasty. *Int Orthop.* 2014;38(4):747-752.
- Hofmann AA, Goldberg T, Tanner AM, Kurtin SM. Treatment of infected total knee arthroplasty using an articulating spacer: 2- to 12-year experience. *Clin Orthop Relat Res.* 2005(430):125-131.
- Greene JW, Reynolds SM, Stimac JD, Malkani AL, Massini MA. Midterm results of hybrid cement technique in revision total knee arthroplasty. J Arthroplasty. 2013;28(4):570-574.
- Bae DK, Song SJ, Heo DB, Lee SH, Song WJ. Long-term survival rate of implants and modes of failure after revision total knee arthroplasty by a single surgeon. J Arthroplasty. 2013;28(7):1130-1134.
- Laskin RS, Ohnsorge J. The use of standard posterior stabilized implants in revision total knee arthroplasty. *Clin Orthop Relat Res.* 2005;440:122-125.
- Peters CL, Erickson JA, Gililland JM. Clinical and radiographic results of 184 consecutive revision total knee arthroplasties placed with modular cementless stems. J Arthroplasty. 2009;24(6 Suppl):48-53.
- Friedman RJ, Hirst P, Poss R, Kelley K, Sledge CB. Results of revision total knee arthroplasty performed for aseptic loosening. *Clin Orthop Relat Res.*

1990(255):235-241.

- Wilke BK, Wagner ER, Trousdale RT. Long-term survival of semi-constrained total knee arthroplasty for revision surgery. *J Arthroplasty*. 2014;29(5): 1005-1008.
- Bistolfi A, Massazza G, Rosso F, Crova M. Rotating-hinge total knee for revision total knee arthroplasty. *Orthopedics*. 2012;35(3):e325-e330.
- Haas SB, Insall JN, Montgomery W 3rd, Windsor RE. Revision total knee arthroplasty with use of modular components with stems inserted without cement. J Bone Joint Surg Am. 1995;77(11):1700-1707.
- Barrack RL, Rorabeck C, Partington P, Sawhney J, Engh G. The results of retaining a well-fixed patellar component in revision total knee arthroplasty. *J Arthroplasty.* 2000;15(4):413-417.
- Dalury DF, Adams MJ. Minimum 6-year follow-up of revision total knee arthroplasty without patella reimplantation. J Arthroplasty. 2012;27 (8 Suppl):91-94.
- Mabry TM, Vessely MB, Schleck CD, Harmsen WS, Berry DJ. Revision total knee arthroplasty with modular cemented stems: long-term follow-up. J Arthroplasty. 2007;22(6 Suppl 2):100-105.
- 23. Whaley AL, Trousdale RT, Rand JA, Hanssen AD. Cemented long-stem revision total knee arthroplasty. *J Arthroplasty.* 2003;18(5):592-599.
- Bottner F, Laskin R, Windsor RE, Haas SB. Hybrid component fixation in revision total knee arthroplasty. *Clin Orthop Relat Res.* 2006;446:127-131.
- Sheng PY, Konttinen L, Lehto M, et al. Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish arthroplasty registry. J Bone Joint Surg Am. 2006;88(7):1425-1430.
- Hwang SC, Kong JY, Nam DC, et al. Revision total knee arthroplasty with a cemented posterior stabilized, condylar constrained or fully constrained prosthesis: a minimum 2-year follow-up analysis. *Clin Orthop Surg.* 2010;2(2):112-120.
- Garcia RM, Hardy BT, Kraay MJ, Goldberg VM. Revision total knee arthroplasty for aseptic and septic causes in patients with rheumatoid arthritis. *Clin Orthop Relat Res.* 2010;468(1):82-89.
- Rajgopal A, Vasdev A, Gupta H, Dahiya V. Revision total knee arthroplasty for septic versus aseptic failure. J Orthop Surg (Hong Kong). 2013;21(3): 285-289.
- Haidukewych GJ, Jacofsky DJ, Pagnano MW, Trousdale RT. Functional results after revision of well-fixed components for stiffness after primary total knee arthroplasty. *J Arthroplasty*. 2005;20(2):133-138.

- Ghomrawi HM, Kane RL, Eberly LE, Bershadsky B, Saleh KJ, North American Knee Arthroplasty Revision Study G. Patterns of functional improvement after revision knee arthroplasty. *J Bone Joint Surg Am.* 2009;91(12): 2838-2845.
- Greidanus NV, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary total knee arthroplasty. *J Arthroplasty*. 2011;26(4):615-620.
- Richards CJ, Garbuz DS, Pugh L, Masri BA. Revision total knee arthroplasty: clinical outcome comparison with and without the use of femoral head structural allograft. *J Arthroplasty*. 2011;26(8):1299-1304.
- Dahm DL, Barnes SA, Harrington JR, Sayeed SA, Berry DJ. Patient-reported activity level after total knee arthroplasty. *J Arthroplasty*. 2008;23(3):401-407.
- Christensen CP, Crawford JJ, Olin MD, Vail TP. Revision of the stiff total knee arthroplasty. J Arthroplasty. 2002;17(4):409-415.
- Jensen CL, Winther N, Schroder HM, Petersen MM. Outcome of revision total knee arthroplasty with the use of trabecular metal cone for reconstruction of severe bone loss at the proximal tibia. *Knee.* 2014;21(6):1233-1237.
- Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus NV, Masri BA. Patient satisfaction and functional status after aseptic versus septic revision total knee arthroplasty using the PROSTALAC articulating spacer. J Arthroplasty. 2004;19(7):874-879.
- Dahm DL, Barnes SA, Harrington JR, Berry DJ. Patient reported activity after revision total knee arthroplasty. J Arthroplasty. 2007;22(6 Suppl 2):106-110.
- Wang CJ, Hsieh MC, Huang TW, Wang JW, Chen HS, Liu CY. Clinical outcome and patient satisfaction in aseptic and septic revision total knee arthroplasty. *Knee*. 2004;11(1):45-49.
- Howard JL, Kudera J, Lewallen DG, Hanssen AD. Early results of the use of tantalum femoral cones for revision total knee arthroplasty. *J Bone Joint Surg Am*. 2011;93(5):478-484.
- Barrack RL, McClure JT, Burak CF, Clohisy JC, Parvizi J, Sharkey P. Revision total knee arthroplasty: the patient's perspective. *Clin Orthop Relat Res.* 2007;464:146-150.
- Kasmire KE, Rasouli MR, Mortazavi SM, Sharkey PF, Parvizi J. Predictors of functional outcome after revision total knee arthroplasty following aseptic failure. *Knee*. 2014;21(1):264-267.
- Azzam K, Parvizi J, Kaufman D, Purtill JJ, Sharkey PF, Austin MS. Revision of the unstable total knee arthroplasty: outcome predictors. *J Arthroplasty*. 2011;26(8):1139-1144.