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T he ability to read and correctly interpret research is 
an essential skill, but most hospitalists—and physi-
cians in general—do not receive formal training in 
biostatistics during their medical education.1-3 In ad-

dition to straightforward statistical tests that compare a single 
exposure and outcome, researchers commonly use statistical 
models to identify and quantify complex relationships among 
many exposures (eg, demographics, clinical characteristics, in-
terventions, or other variables) and an outcome. Understand-
ing statistical models can be challenging. Still, it is important to 
recognize the advantages and limitations of statistical models, 
how to interpret their results, and the potential implications of 
findings on current clinical practice.

In the article “Rates and Characteristics of Medical Mal-
practice Claims Against Hospitalists” published in the  
July 2021 issue of the Journal of Hospital Medicine, Schaffer 
et al4 used the Comparative Benchmarking System database, 
which is maintained by a malpractice insurer, to characterize 
malpractice claims against hospitalists. The authors used 
multiple logistic regression models to understand the rela-
tionship among clinical factors and indemnity payments. In 
this Progress Note, we describe situations in which logistic re-
gression is the proper statistical method to analyze a data set, 
explain results from logistic regression analyses, and equip 
readers with skills to critically appraise conclusions drawn 
from these models.

CHOOSING AN APPROPRIATE  
STATISTICAL MODEL
Statistical models often are used to describe the relationship 
among one or more exposure variables (ie, independent vari-
ables) and an outcome (ie, dependent variable). These models 
allow researchers to evaluate the effects of multiple exposure 
variables simultaneously, which in turn allows them to “isolate” 
the effect of each variable; in other words, models facilitate an 
understanding of the relationship between each exposure vari-
able and the outcome, adjusted for (ie, independent of) the 

other exposure variables in the model.
Several statistical models can be used to quantify rela-

tionships within the data, but each type of model has certain 
assumptions that must be satisfied. Two important assump-
tions include characteristics of the outcome (eg, the type 
and distribution) and the nature of the relationships among 
the outcome and independent variables (eg, linear vs non-
linear). Simple linear regression, one of the most basic sta-
tistical models used in research,5 assumes that (a) the out-
come is continuous (ie, any numeric value is possible) and 
normally distributed (ie, its histogram is a bell-shaped curve) 
and (b) the relationship between the independent variable 
and the outcome is linear (ie, follows a straight line). If an 
investigator wanted to understand how weight is related to 
height, a simple linear regression could be used to devel-
op a mathematical equation that tells us how the outcome 
(weight) generally increases as the independent variable 
(height) increases. 

Often, the outcome in a study is not a continuous variable 
but a simple success/failure variable (ie, dichotomous vari-
able that can be one of two possible values). Schaffer et al4 

examined the binary outcome of whether a malpractice claim 
case would end in an indemnity payment or no payment. Lin-
ear regression models are not equipped to handle dichoto-
mous outcomes. Instead, we need to use a different statistical 
model: logistic regression. In logistic regression, the proba-
bility (p) of a defined outcome event is estimated by creating 
a regression model. 

THE LOGISTIC MODEL 
A probability (p) is a measure of how likely an event (eg, a mal-
practice claim ends in an indemnity payment or not) is to occur. 
It is always between 0 (ie, the event will definitely not occur) 
and 1 (ie, the event will definitely occur). A p of 0.5 means there 
is a 50/50 chance that the event will occur (ie, equivalent to a 
coin flip). Because p is a probability, we need to make sure it is 
always between 0 and 1. If we were to try to model p with a lin-
ear regression, the model would assume that p could extend 
beyond 0 and 1. What can we do?

Applying a transformation is a commonly used tool in sta-
tistics to make data work better within statistical models.6 In 
this case, we will transform the variable p. In logistic regres-
sion, we model the probability of experiencing the outcome 
through a transformation called a logit. The logit represents 
the natural logarithm (ln) of the ratio of the probability of expe-
riencing the outcome (p) vs the probability of not experiencing 
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the outcome (1 – p), with the ratio being the odds of the event 
occurring. 
   p 
 logit(p) = ln  (  )  

(1)
   1 – p

This transformation works well for dichotomous outcomes be-
cause the logit transformation approximates a straight line as 
long as p is not too large or too small (between 0.05 and 0.95). 

If we are performing a logistic regression with only one inde-
pendent variable (x) and want to understand the relationship 
between this variable (x) and the probability of an outcome 
event (p), then our model is the equation of a line. The equa-
tion for the base model of logistic regression with one inde-
pendent variable (x) is
  p 
 ln (  )= β0 + β1 x   (2)
  1 – p

where  β0 is the y-intercept and β1 is the slope of the line. Equa-
tion (2) is identical to the algebraic equation y = mx + b for a 
line, just rearranged slightly. In this algebraic equation, m is the 
slope (the same as β1) and b is the y-intercept (the same as β0). 
We will see that β0 and β1 are estimated (ie, assigned numer-
ic values) from the data collected to help us understand how  
x and
  p 
 ln (  )  1 – p

are related and are the basis for estimating odds ratios. 
We can build more complex models using multivariable lo-

gistic regression by adding more independent variables to the 
right side of equation (2). Essentially, this is what Schaffer et al4 
did when, for example, they described clinical factors associat-
ed with indemnity payments (Schaffer et al, Table 3). 

There are two notable techniques used frequently with 
multivariable logistic regression models. The first involves 
choosing which independent variables to include in the mod-
el. One way to select variables for multivariable models is 
defining them a priori, that is deciding which variables are 
clinically or conceptually associated with the outcome before 
looking at the data. With this approach, we can test specific 
hypotheses about the relationships between the indepen-
dent variables and the outcome. Another common approach 
is to look at the data and identify the variables that vary sig-
nificantly between the two outcome groups. Schaffer et al4 
used an a priori approach to define variables in their multi-
variable model (ie, “variables for inclusion into the multivari-
able model were determined a priori”). 

A second technique is the evaluation of collinearity, 
which helps us understand whether the independent vari-
ables are related to each other. It is important to consider 
collinearity between independent variables because the 
inclusion of two (or more) variables that are highly correlat-
ed can cause interference between the two and create mis-
leading results from the model. There are techniques to 
assess collinear relationships before modeling or as part of 
the model-building process to determine which variables 

should be excluded. If there are two (or more) indepen-
dent variables that are similar, one (or more) must be re-
moved from the model. 

UNDERSTANDING THE RESULTS  
OF THE LOGISTIC MODEL
Fitting the model is the process by which statistical software 
(eg, SAS, Stata, R, SPSS) estimates the relationships among in-
dependent variables in the model and the outcome within a 
specific dataset. In equation (2), this essentially means that the 
software will evaluate the data and provide us with the best es-
timates for β0 (the y-intercept) and β1 (the slope) that describe 
the relationship between the variable x and 
  p 
 ln (  ).
  1 – p

Modeling can be iterative, and part of the process may include 
removing variables from the model that are not significantly 
associated with the outcome to create a simpler solution, a 
process known as model reduction. The results from models 
describe the independent association between a specific char-
acteristic and the outcome, meaning that the relationship has 
been adjusted for all the other characteristics in the model. 

The relationships among the independent variables and 
outcome are most often represented as an odds ratio  (OR), 
which quantifies the strength of the association between two 
variables and is directly calculated from the β values in the 
model. As the name suggests, an OR is a ratio of odds. But 
what are odds? Simply, the odds of an outcome (such as mor-
tality) is the probability of experiencing the event divided by 
the probability of not experiencing that event; in other words, 
it is the ratio: 
  p 
   .
  (1 – p)

The concept of odds is often unfamiliar, so it can be helpful 
to consider the definition in the context of games of chance. 
For example, in horse race betting, the outcome of interest is 
that a horse will lose a race. Imagine that the probability of a 
horse losing a race is 0.8 and the probability of winning is 0.2. 
The odds of losing are
  p  

0.8
    =    = 4.
  (1 – p)  0.2

These odds usually are listed as 4-to-1, meaning that out of 5 
races (ie, 4 + 1) the horse is expected to lose 4 times and win 
once. When odds are listed this way, we can easily calculate the 
associated probability by recognizing that the total number of 
expected races is the sum of two numbers (probability of los-
ing: 4 races out of 5, or 0.80 vs probability of winning: 1 race 
out of 5, or 0.20). 

In medical research, the OR typically represents the odds 
for one group of patients (A) compared with the odds for an-
other group of patients (B) experiencing an outcome. If the 
odds of the outcome are the same for group A and group B, 
then OR = 1.0, meaning that the probability of the outcome 



An Official Publication of the Society of Hospital Medicine Journal of Hospital Medicine®    Published Online October 2021          E3

Logistic Regression Progress Note   |   Bettenhausen et al

is the same between the two groups. If the patients in group 
A have greater odds of experiencing the outcome compared 
with group B patients (and a greater probability of the out-
come), then the OR will be >1. If the opposite is true, then 
the OR will be <1. 

Schaffer et al4 estimated that the OR of an indemnity pay-
ment in malpractice cases involving errors in clinical judg-
ment as a contributing factor was 5.01 (95% CI, 3.37-7.45). This 
means that malpractice cases involving errors in clinical judge-
ment had a 5.01 times greater odds of indemnity payment 
compared with those without these errors after adjusting for 
all other variables in the model (eg, age, severity). Note that 
the 95% CI does not include 1.0. This indicates that the OR is 
statistically >1, and we can conclude that there is a significant 
relationship between errors in clinical judgment and payment 
that is unlikely to be attributed to chance alone. 

In logistic regression for categorical independent variables, 
all categories are compared with a reference group within that 
variable, with the reference group serving as the denomina-
tor of the OR. The authors4 did not incorporate continuous in-
dependent variables in their multivariable logistic regression 
model. However, if the authors examined length of hospitaliza-
tion as a contributing factor in indemnity payments, for exam-
ple, the OR would represent a 1-unit increase in this variable 
(eg, 1-day increase in length of stay). 

CONCLUSION
Logistic regression describes the relationships in data and is 
an important statistical model across many types of research. 
This Progress Note emphasizes the importance of weighing 
the advantages and limitations of logistic regression, provides 
a common approach to data transformation, and guides the 
correct interpretation of logistic regression model results. 
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