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Comparing Artificial Intelligence 
Platforms for Histopathologic Cancer 
Diagnosis
Andrew A. Borkowski, MD; Catherine P. Wilson, MT; Steven A. Borkowski; L. Brannon Thomas, MD;  
Lauren A. Deland, RN; Stefanie J. Grewe, MD; and Stephen M. Mastorides, MD

Two machine learning platforms were successfully used to provide diagnostic guidance in the 
differentiation between common cancer conditions in veteran populations.

A rtificial intelligence (AI), first described 
in 1956, encompasses the field of com-
puter science in which machines are 

trained to learn from experience. The term 
was popularized by the 1956 Dartmouth 
College Summer Research Project on Arti-
ficial Intelligence.1 The field of AI is rapidly 
growing and has the potential to affect many 
aspects of our lives. The emerging impor-
tance of AI is demonstrated by a February 
2019 executive order that launched the 
American AI Initiative, allocating resources 
and funding for AI development.2 The ex-
ecutive order stresses the potential impact 
of AI in the health care field, including its 
potential utility to diagnose disease. Fed-
eral agencies were directed to invest in AI 
research and development to promote rapid 
breakthroughs in AI technology that may 
impact multiple areas of society.

Machine learning (ML), a subset of AI, 
was defined in 1959 by Arthur Samuel and 
is achieved by employing mathematic mod-
els to compute sample data sets.3 Originat-
ing from statistical linear models, neural 
networks were conceived to accomplish these 
tasks.4 These pioneering scientific achieve-
ments led to recent developments of deep 
neural networks. These models are devel-
oped to recognize patterns and achieve com-
plex computational tasks within a matter of 
minutes, often far exceeding human ability.5 
ML can increase efficiency with decreased 
computation time, high precision, and recall 
when compared with that of human decision  
making.6

ML has the potential for numerous appli-
cations in the health care field.7-9 One prom-
ising application is in the field of anatomic 

pathology. ML allows representative images 
to be used to train a computer to recognize 
patterns from labeled photographs. Based 
on a set of images selected to represent a 
specific tissue or disease process, the com-
puter can be trained to evaluate and recog-
nize new and unique images from patients 
and render a diagnosis.10 Prior to mod-
ern ML models, users would have to im-
port many thousands of training images to 
produce algorithms that could recognize 
patterns with high accuracy. Modern ML al-
gorithms allow for a model known as trans-
fer learning, such that far fewer images are 
required for training.11-13

Two novel ML platforms available for pub-
lic use are offered through Google (Mountain 
View, CA) and Apple (Cupertino, CA).14,15 
They each offer a user-friendly interface with 
minimal experience required in computer 
science. Google AutoML uses ML via cloud 
services to store and retrieve data with ease. 
No coding knowledge is required. The Apple 
Create ML Module provides computer-based 
ML, requiring only a few lines of code. 

The Veterans Health Administration 
(VHA) is the largest single health care sys-
tem in the US, and nearly 50 000 cancer 
cases are diagnosed at the VHA annually.16 
Cancers of the lung and colon are among 
the most common sources of invasive can-
cer and are the 2 most common causes of 
cancer deaths in America.16 We have previ-
ously reported using Apple ML in detecting 
non-small cell lung cancers (NSCLCs), in-
cluding adenocarcinomas and squamous cell 
carcinomas (SCCs); and colon cancers with 
accuracy.17,18 In the present study, we expand 
on these findings by comparing Apple and 
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Google ML platforms in a variety of 
common pathologic scenarios in vet-
eran patients. Using limited training 
data, both programs are compared 
for precision and recall in differenti-
ating conditions involving lung and 
colon pathology. 

In the first 4 experiments, we eval-
uated the ability of the platforms to 
differentiate normal lung tissue from 
cancerous lung tissue, to distinguish 
lung adenocarcinoma from SCC, 
and to differentiate colon adenocar-
cinoma from normal colon tissue. 
Next, cases of colon adenocarcinoma 
were assessed to determine whether 
the presence or absence of the KRAS 
proto-oncogene could be determined 
histologically using the AI platforms. 
KRAS is found in a variety of cancers, 
including about 40% of colon adeno-
carcinomas.19 For colon cancers, the 
presence or absence of the mutation 
in KRAS has important implications 
for patients as it determines whether 
the tumor will respond to specific 
chemotherapy agents.20 The presence 
of the KRAS gene is currently deter-
mined by complex molecular testing 
of tumor tissue.21 However, we as-
sessed the potential of ML to deter-
mine whether the mutation is present 
by computerized morphologic analysis alone. 
Our last experiment examined the ability of 
the Apple and Google platforms to differen-
tiate between adenocarcinomas of lung ori-
gin vs colon origin. This has potential utility 
in determining the site of origin of metastatic 
carcinoma.22

METHODS
Fifty cases of lung SCC, 50 cases of lung ad-
enocarcinoma, and 50 cases of colon ade-
nocarcinoma were randomly retrieved from 
our molecular database. Twenty-five colon 
adenocarcinoma cases were positive for 
mutation in KRAS, while 25 cases were neg-
ative for mutation in KRAS. Seven hundred 
fifty total images of lung tissue (250 benign 
lung tissue, 250 lung adenocarcinomas, and  
250 lung SCCs) and 500 total images of 
colon tissue (250 benign colon tissue and 
250 colon adenocarcinoma) were obtained 
using a Leica Microscope MC190 HD Cam-

era (Wetzlar, Germany) connected to an 
Olympus BX41 microscope (Center Valley, 
PA) and the Leica Acquire 9072 software for 
Apple computers. All the images were cap-
tured at a resolution of 1024 x 768 pixels 
using a 60x dry objective. Lung tissue images 
were captured and saved on a 2012 Apple 
MacBook Pro computer, and colon images 
were captured and saved on a 2011 Apple 
iMac computer. Both computers were run-
ning macOS v10.13.

Creating Image Classifier Models Using 
Apple Create ML 
Apple Create ML is a suite of products that 
use various tools to create and train custom 
ML models on Apple computers.15 The suite 
contains many features, including image 
classification to train a ML model to clas-
sify images, natural language processing to 
classify natural language text, and tabular 
data to train models that deal with labeling  

FIGURE 1 Results Using Google AutoML to Differentiate Lung 
Adenocarcinoma From Colon Adenocarcinoma With Overall 
Precision and Recall Data (Experiment 6)
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information or estimating new quantities. We 
used Create ML Image Classification to cre-
ate image classifier models for our project  
(Appendix A).

Creating ML Modules Using Google 
Cloud AutoML Vision Beta
Google Cloud AutoML is a suite of machine 
learning products, including AutoML Vi-
sion, AutoML Natural Language and AutoML 
Translation.14 All Cloud AutoML machine 
learning products were in beta version at the 
time of experimentation. We used Cloud Au-
toML Vision beta to create ML modules for 
our project. Unlike Apple Create ML, which 
is run on a local Apple computer, the Google 
Cloud AutoML is run online using a Google 
Cloud account. There are no minimum spec-
ifications requirements for the local computer 
since it is using the cloud-based architecture 
(Appendix B).

Experiment 1 
We compared Apple Create ML Image Classi-
fier and Google AutoML Vision in their ability 
to detect and subclassify NSCLC based on the 
histopathologic images. We created 3 classes 
of images (250 images each): benign lung tis-
sue, lung adenocarcinoma, and lung SCC.

Experiment 2 
We compared Apple Create ML Image 
Classifier and Google AutoML Vision 
in their ability to differentiate between 
normal lung tissue and NSCLC histo-
pathologic images with 50/50 mixture 
of lung adenocarcinoma and lung SCC. 
We created 2 classes of images (250 im-
ages each): benign lung tissue and lung 
NSCLC. 

Experiment 3 
We compared Apple Create ML Image 
Classifier and Google AutoML Vision in 
their ability to differentiate between lung 
adenocarcinoma and lung SCC histo-
pathologic images. We created 2 classes 
of images (250 images each): adenocar-
cinoma and SCC. 

Experiment 4
We compared Apple Create ML Image 
Classifier and Google AutoML Vision 
in their ability to detect colon cancer  
histopathologic images regardless 

of mutation in KRAS status. We created  
2 classes of images (250 images each): benign 
colon tissue and colon adenocarcinoma.

Experiment 5 
We compared Apple Create ML Image Clas-
sifier and Google AutoML Vision in their 
ability to differentiate between colon ade-
nocarcinoma with mutations in KRAS and 
colon adenocarcinoma without the mutation 
in KRAS histopathologic images. We created  
2 classes of images (125 images each): colon 
adenocarcinoma cases with mutation in 
KRAS and colon adenocarcinoma cases with-
out the mutation in KRAS. 

Experiment 6 
We compared Apple Create ML Image Clas-
sifier and Google AutoML Vision in their 
ability to differentiate between lung ad-
enocarcinoma and colon adenocarcinoma  
histopathologic images. We created 2 classes 
of images (250 images each): colon adenocar-
cinoma lung adenocarcinoma. 

RESULTS
Twelve machine learning models were cre-
ated in 6 experiments using the Apple Cre-
ate ML and the Google AutoML (Table). To  

FIGURE 2 Results Using Google AutoML to Differentiate Lung 
Adenocarcinoma From Colon Adenocarcinoma With Precision 
and Recall Data for Lung Adenocarcinoma Label (Experiment 6)
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investigate recall and precision differ-
ences between the Apple and the Google 
ML algorithms, we performed 2-tailed 
distribution, paired t tests. No statistically 
significant differences were found (P = 
.52 for recall and .60 for precision).

Overall, each model performed well 
in distinguishing between normal and 
neoplastic tissue for both lung and 
colon cancers. In subclassifying NSCLC 
into adenocarcinoma and SCC, the 
models were shown to have high lev-
els of precision and recall. The models 
also were successful in distinguishing 
between lung and colonic origin of ad-
enocarcinoma (Figures 1-4). However, 
both systems had trouble discerning 
colon adenocarcinoma with mutations 
in KRAS from adenocarcinoma without 
mutations in KRAS. 

DISCUSSION
Image classifier models using ML algo-
rithms hold a promising future to revolu-
tionize the health care field. ML products, 
such as those modules offered by Apple and 
Google, are easy to use and have a simple 
graphic user interface to allow individuals to 
train models to perform humanlike tasks in 
real time. In our experiments, we compared 
multiple algorithms to determine their abil-

ity to differentiate and subclassify histopath-
ologic images with high precision and recall 
using common scenarios in treating veteran  
patients. 

Analysis of the results revealed high pre-
cision and recall values illustrating the  

FIGURE 3 Results Using Google AutoML to Differentiate Lung 
Adenocarcinoma From Colon Adenocarcinoma With Precision 
and Recall Data for Colon Adenocarcinoma Label (Experiment 6)

TABLE Results Summary for the Apple Create ML and the Google AutoML Machine Learning Models
Machine 
Learning 
Model Classes Apple, % Google, % Apple, % Google, %

Model 1 Lung normal 100.0 100.0 98.0 100.0

Lung adenocarcinoma 86.0 85.7 97.7 81.8

Lung squamous cell carcinoma 98.0 89.9 89.1 90.6

Model 2 Lung normal 100.0 100.0 98.0 100.0

Non-small cell lung cancer 98.0 100.0 100.0 100.0

Model 3 Lung adenocarcinoma 90.0 82.4 91.8 87.5

Lung squamous cell carcinoma 92.0 92.3 90.2 88.9

Model 4 Colon normal 98.0 95.8 100.0 100.0

Colon adenocarcinoma 100.0 100.0 98.0 96.0

Model 5 Colon adenocarcinoma KRAS+ 72.0 88.2 69.2 71.4

Colon adenocarcinoma  KRAS- 68.0 50.0 70.8 75.0

Model 6 Lung adenocarcinoma 96.0 91.3 96.0 100.0

Colon adenocarcinoma 96.0 100.0 96.0 93.9

Recall Precision
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models’ ability to differentiate and detect be-
nign lung tissue from lung SCC and lung ad-
enocarcinoma in ML model 1, benign lung 
from NSCLC carcinoma in ML model 2, and 
benign colon from colonic adenocarcinoma 
in ML model 4. In ML model 3 and 6, both 
ML algorithms performed at a high level to 
differentiate lung SCC from lung adenocarci-
noma and lung adenocarcinoma from colonic 
adenocarcinoma, respectively. Of note, ML 
model 5 had the lowest precision and recall 
values across both algorithms demonstrating 
the models’ limited utility in predicting mo-
lecular profiles, such as mutations in KRAS as 
tested here. This is not surprising as pathol-
ogists currently require complex molecular 
tests to detect mutations in KRAS reliably in 
colon cancer. 

Both modules require minimal program-
ming experience and are easy to use. In our 
comparison, we demonstrated critical distin-
guishing characteristics that differentiate the 
2 products. 

Apple Create ML image classifier is avail-
able for use on local Mac computers that use 
Xcode version 10 and macOS 10.14 or later, 
with just 3 lines of code required to perform 
computations. Although this product is lim-
ited to Apple computers, it is free to use, and 
images are stored on the computer hard drive. 
Of unique significance on the Apple system 
platform, images can be augmented to alter 

their appearance to enhance model train-
ing. For example, imported images can 
be cropped, rotated, blurred, and flipped, 
in order to optimize the model’s training 
abilities to recognize test images and per-
form pattern recognition. This feature is 
not as readily available on the Google plat-
form. Apple Create ML Image classifier’s 
default training set consists of 75% of total 
imported images with 5% of the total im-
ages being randomly used as a validation 
set. The remaining 20% of images comprise 
the testing set. The module’s computational anal-
ysis to train the model is achieved in about  
2 minutes on average. The score threshold 
is set at 50% and cannot be manipulated 
for each image class as in Google AutoML  
Vision.

Google AutoML Vision is open and 
can be accessed from many devices. It 
stores images on remote Google servers 
but requires computing fees after a $300 

credit for 12 months. On AutoML Vision, 
random 80% of the total images are used in 
the training set, 10% are used in the vali-
dation set, and 10% are used in the testing 
set. It is important to highlight the differ-
ent percentages used in the default settings 
on the respective modules. The time to 
train the Google AutoML Vision with de-
fault computational power is longer on av-
erage than Apple Create ML, with about  
8 minutes required to train the machine 
learning module. However, it is possible to 
choose more computational power for an 
additional fee and decrease module train-
ing time. The user will receive e-mail alerts 
when the computer time begins and is com-
pleted. The computation time is calculated 
by subtracting the time of the initial e-mail 
from the final e-mail. 

Based on our calculations, we deter-
mined there was no significant difference 
between the 2 machine learning algorithms 
tested at the default settings with recall 
and precision values obtained. These find-
ings demonstrate the promise of using a 
ML algorithm to assist in the performance 
of human tasks and behaviors, specifi-
cally the diagnosis of histopathologic im-
ages. These results have numerous potential 
uses in clinical medicine. ML algorithms 
have been successfully applied to diagnostic 
and prognostic endeavors in pathology,23-28  

FIGURE 4 Results Using Apple Create ML Demonstrating 
Precision and Recall Data Differentiating Lung 
Adenocarcinoma From Colon Adenocarcinoma 
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dermatology,29-31 ophthalmology,32 cardiol-
ogy,33 and radiology.34-36 

Pathologists often use additional tests, 
such as special staining of tissues or mo-
lecular tests, to assist with accurate classi-
fication of tumors. ML platforms offer the 
potential of an additional tool for patholo-
gists to use along with human microscopic 
interpretation.37,38 In addition, the number 
of pathologists in the US is dramatically de-
creasing, and many other countries have 
marked physician shortages, especially in 
fields of specialized training such as pathol-
ogy.39-42 These models could readily assist 
physicians in underserved countries and 
impact shortages of pathologists elsewhere 
by providing more specific diagnoses in an 
expedited manner.43 

Finally, although we have explored the 
application of these platforms in common 
cancer scenarios, great potential exists to 
use similar techniques in the detection of 
other conditions. These include the poten-
tial for classification and risk assessment of 
precancerous lesions, infectious processes 
in tissue (eg, detection of tuberculosis or 
malaria),24,44 inflammatory conditions (eg, 
arthritis subtypes, gout),45 blood disorders 
(eg, abnormal blood cell morphology),46 
and many others. The potential of these 
technologies to improve health care deliv-
ery to veteran patients seems to be limited 
only by the imagination of the user.47

Regarding the limited effectiveness in de-
termining the presence or absence of mu-
tations in KRAS for colon adenocarcinoma, 
it is mentioned that currently pathologists 
rely on complex molecular tests to detect 
the mutations at the DNA level.21 It is pos-
sible that the use of more extensive training 
data sets may improve recall and precision 
in cases such as these and warrants further 
study. Our experiments were limited to the 
stipulations placed by the free trial software 
agreements; no costs were expended to use 
the algorithms, though an Apple computer 
was required.

CONCLUSION
We have demonstrated the successful appli-
cation of 2 readily available ML platforms in 
providing diagnostic guidance in differentia-
tion between common cancer conditions in 
veteran patient populations. Although both 

platforms performed very well with no statis-
tically significant differences in results, some 
distinctions are worth noting. Apple Create 
ML can be used on local computers but is 
limited to an Apple operating system. Google 
AutoML is not platform-specific but runs 
only via Google Cloud with associated com-
putational fees. Using these readily available 
models, we demonstrated the vast potential 
of AI in diagnostic pathology. The applica-
tion of AI to clinical medicine remains in the 
very early stages. The VA is uniquely poised 
to provide leadership as AI technologies will 
continue to dramatically change the future of 
health care, both in veteran and nonveteran 
patients nationwide.  
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For each machine model, we used the following procedure. We created and 
named new datasets in AutoML Vision Datasets and imported images using the 
graphic user interface. We left the classification type box unchecked because 
each of our image classes had only a single label. We created class labels and 
imported images for each of the classes. 

Training a new model took about 8 to 9 minutes. The following information 
was available: average precision (area under the precision-recall tradeoff curve), 
overall precision and recall, score threshold slider, precision-recall graphs, and 
confusion matrix. Confusion matrix table, provided by the AutoML, displays how 
often trained model classifies each label correctly and how often incorrectly. 
When images were uploaded, Google AutoML Vision randomly assigned 80% 
for training, 10% for validation, and 10% for testing the module.

For each model, we used the following procedure. We opened the Apple Xcode 
macOS playground v10 on a 2018 Apple MacBook Pro (macOS v10.14, 2.3 GHz 
Intel Core I5, 8 GB 2133 MHz LPDDR3, Intel Iris Plus Graphics 655 GPU 1536 
MB, 256 SSD) (Standard configuration) to create image classifier model with  
following lines of code (Apple Swift programming language):

import CreateMLUI
let builder = MLImageClassifierBuilder()
builder.showInLiveView()

We then opened the assistant editor in Xcode and ran the code. The live view 
displayed the image classifier UI. We then dragged in the training folder for  
training and validating the model. Once training and validation were complete, 
we dragged in the testing folder to evaluate the model performance on the  
indicated locations in live view. All training, validation, and testing were done at 
the default setting.

When handling images, Apple Create ML Image Classifier randomly assigned 
80% of the images to a training folder and 20% to a testing folder. The training 
folder included class-labeled subfolders with training images (80% of total). The 
testing folder included class-labeled subfolders with testing images (20% of 
total). The Apple program randomly assigned 5% of the images from the training 
folder for validation.

APPENDIX A. Apple Create ML Test Procedure

APPENDIX B. Google AutoML Test Procedure
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