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Introduction: Recently, numerous studies have linked so-
cial determinants of health (SDoH) with clinical outcomes. 
While this association is well known, the interfacility variabil-
ity of these risk favors within the Veterans Health Administra-
tion (VHA) is not known. Such information could be useful to 
the VHA for resource and funding allocation. The aim of this 
study is to explore the interfacility variability of 5 SDoH within 
the VHA. 

Methods: In a cohort of patients (aged ≥ 65 years) hospital-
ized at VHA acute care facilities with either acute myocar-
dial infarction (AMI), heart failure (HF), or pneumonia in 2012, 
we assessed (1) the proportion of patients with any of the fol-
lowing five documented SDoH: lives alone, marginal hous-
ing, alcohol use disorder, substance use disorder, and use of 
substance use services, using administrative diagnosis codes 
and clinic stop codes; and (2) the documented facility-level 
variability of these SDoH. To examine whether variability was 
due to regional coding differences, we assessed the variation 

of living alone using a validated natural language processing 
(NLP) algorithm.

Results: The proportion of veterans admitted for AMI, HF, and 
pneumonia with SDoH was low. Across all 3 conditions, lives 
alone was the most common SDoH (2.2% [interquartile range 
(IQR), 0.7-4.7]), followed by substance use disorder (1.3% 
[IQR, 0.5-2.1]), and use of substance use services (1.2% [IQR, 
0.6-1.8]). Using NLP, the proportion of hospitalized veterans 
with lives alone was higher for HF (14.4% vs 2.0%, P < .01), 
pneumonia (11% vs 1.9%, P < .01), and AMI (10.2% vs 1.4%, 
P < .01) compared with International Classification of Dis-
eases, Ninth Edition codes. Interfacility variability was noted 
with both administrative and NLP extraction methods.  
Conclusions: The presence of SDoH in administrative data 
among patients hospitalized for common medical issues is 
low and variable across VHA facilities. Significant facility-
level variation of 5 SDoH was present regardless of extrac-
tion method. 
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Social determinants of health (SDoH) 
are social, economic, environmen-
tal, and occupational factors that are 

known to influence an individual’s health 
care utilization and clinical outcomes.1,2 Be-
cause the Veterans Health Administration 
(VHA) is charged to address both the med-
ical and nonmedical needs of the veteran 
population, it is increasingly interested in 
the impact SDoH have on veteran care.3,4 To 
combat the adverse impact of such factors, 
the VHA has implemented several large-scale 
programs across the US that focus on preva-
lent SDoH, such as homelessness, substance 
abuse, and alcohol use disorders.5,6 While 
such risk factors are generally universal in 
their distribution, variation across regions, 
between urban and rural spaces, and even 
within cities has been shown to exist in pri-
vate settings.7 Understanding such variability 
potentially could be helpful to US Depart-
ment of Veterans Affairs (VA) policymakers 
and leaders to better allocate funding and re-
sources to address such issues. 

Although previous work has highlighted 
regional and neighborhood-level variability 
of SDoH, no study has examined the facility-
level variability of commonly encountered 

social risk factors within the VHA.4,8 The 
aim of this study was to describe the inter-
facility variation of 5 common SDoH known 
to influence health and health outcomes 
among a national cohort of veterans hospi-
talized for common medical issues by using 
administrative data. 

METHODS
We used a national cohort of veterans aged 
≥ 65 years who were hospitalized at a VHA 
acute care facility with a primary discharge 
diagnosis of acute myocardial infarction 
(AMI), heart failure (HF), or pneumonia in 
2012. These conditions were chosen because 
they are publicly reported and frequently 
used for interfacility comparison. 

Using the International Classification of 
Diseases–9th Revision (ICD-9) and VHA clini-
cal stop codes, we calculated the median doc-
umented proportion of patients with any of 
the following 5 SDoH: lived alone, marginal 
housing, alcohol use disorder, substance 
use disorder, and use of substance use ser-
vices for patients presenting with HF, MI, and 
pneumonia (Table). These SDoH were cho-
sen because they are intervenable risk factors 
for which the VHA has several programs (eg, 
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homeless outreach, substance abuse, and to-
bacco cessation). To examine the variability 
of these SDoH across VHA facilities, we de-
termined the number of hospitals that had a 
sufficient number of admissions (≥ 50) to be 
included in the analyses. We then examined 
the administratively documented, facility-
level variation in the proportion of individ-
uals with any of the 5 SDoH administrative 
codes and examined the distribution of their 
use across all qualifying facilities.

Because variability may be due to regional 
coding differences, we examined the differ-
ence in the estimated prevalence of the risk 
factor lives alone by using a previously de-
veloped natural language processing (NLP) 
program.9 The NLP program is a rule-based 
system designed to automatically extract in-
formation that requires inferencing from 
clinical notes (eg, discharge summaries and 
nursing, social work, emergency department 
physician, primary care, and hospital admis-
sion notes). For instance, the program iden-
tifies whether there was direct or indirect 
evidence that the patient did or did not live 

alone. In addition to extracting data on lives 
alone, the NLP program has the capacity to 
extract information on lack of social support 
and living alone—2 characteristics without 
VHA interventions, which were not exam-
ined here. The NLP program was developed 
and evaluated using at least 1 year of notes 
prior to index hospitalization. Because this 
program was developed and validated on a 
2012 data set, we were limited to using a co-
hort from this year as well. 

All analyses were conducted using SAS 
Version 9.4. The San Francisco VA Medical 
Center Institutional Review Board approved 
this study. 

RESULTS
In total, 21,991 patients with either HF 
(9,853), pneumonia (9,362), or AMI 
(2,776) were identified across 91 VHA fa-
cilities. The majority were male (98%) and 
had a median (SD) age of 77.0 (9.0) years. 
The median facility-level proportion of vet-
erans who had any of the SDoH risk factors 
extracted through administrative codes was 

TABLE Patients With Social Determinants of Health

 Variables

Individual Conditions
All  

ConditionsHF AMI Pneumonia

Hospitals, No.a 82 35 85 91

Patients, No. 9,853 2,776 9,362 21,991

Patient Demographics

Age, mean (SD) 77 (8.9) 75 (8.5) 77 (9.1) 77 (9.0)

Male, No. (%) 9,699 (98.4) 2,731 (98.4) 9,170 (97.9) 21,578 (98.2)

Proportion of Patients With Social Determinants of Health, median (IQR)

Lives alone (NLP) 14.4 (9.1-19.0)b 10.2 (4.3-17.1)b 11.0 (5.9-15.2)b 12.3 (8.4-17.2)b

Lives alone (ICD-9) 2.0 (1.0-5.2) 1.4 (0-3.4) 1.9 (0.7-5.4) 2.2 (0.7-4.7)

Marginal housing 0 (0-0.8) 0 (0-1.7) 1.2 (0-2.0) 0.6 (0.3-1.4)

Alcohol use disorder 0 (0-0.7) 0 (0-0) 0 (0-1.3) 0.5 (0-0.8)

Substance use disorder 1.2 (0-2.2) 1.6 (0-3.0) 1.3 (0-2.2) 1.3 (0.5-2.1)

Use of substance use services 0.9 (0-1.6) 1.0 (0-1.7) 1.6 (0-2.2) 1.2 (0.6-1.8)

Abbreviations: AMI, acute myocardial infarction; HF, heart failure, ICD-9, International Classification of Diseases, Ninth Edition; IQR, interquartile range;  NLP, 
natural language processing.
aFacility required ≥ 50 mentions of a social determinants of health to be included in analysis.
bSignifies P < .01 when compared with ‘lives alone’ based on ICD-9 codes.
Administrative codes: ‘lives alone’ (V60.3, V60.4), ‘marginal housing’ (V60.0, V60.1), ‘alcohol use disorder’ (291.0, 303.xx, 305.0, 571.x), ‘substance use disorder’ 
(965.00, 965.01, 965.02, 965.09, E850.0, E850.1, E850.2, E935.0, E935.1, E935.2, 304.xx, 305.x, 965.0x, 967.0, 969.4, 969.6, 969.7, E850.0, E850.1, E850.2, 
E854.1, E854.2, E854.3, V58.6), ‘use of substance use services’ (US Department of Veterans Affairs clinic description codes: 130, 131)
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low across all conditions, rang-
ing from 0.5 to 2.2%. The most 
prevalent factors among patients 
admitted for HF, AMI, and pneu-
monia were lives alone (2.0% [In-
terquartile range (IQR), 1.0-5.2], 
1.4% [IQR, 0-3.4], and 1.9% [IQR, 
0.7-5.4]), substance use disorder 
(1.2% [IQR, 0-2.2], 1.6% [IQR: 
0-3.0], and 1.3% [IQR, 0-2.2] 
and use of substance use services 
(0.9% [IQR, 0-1.6%], 1.0% [IQR, 
0-1.7%], and 1.6% [IQR, 0-2.2%], 
respectively [Table]). 

When utilizing the NLP algo-
rithm, the documented prevalence 
of lives alone in the free text of the 
medical record was higher than  
administrative coding across all  
conditions (12.3% vs. 2.2%; P < .01). 
Among each of the 3 assessed condi-
tions, HF (14.4% vs 2.0%, P < .01) 
had higher levels of lives alone compared 
with pneumonia (11% vs 1.9%, P < .01), and 
AMI (10.2% vs 1.4%, P < .01) when using the 
NLP algorithm. When we examined the doc-
umented facility-level variation in the propor-
tion of individuals with any of the 5 SDoH 
administrative codes or NLP, we found large 
variability across all facilities—regardless of 
extraction method (Figure).  

DISCUSSION
While SDoH are known to impact health 
outcomes, the presence of these risk fac-
tors in administrative data among individu-
als hospitalized for common medical issues 
is low and variable across VHA facilities. Un-
derstanding the documented, facility-level 
variability of these measures may assist the 
VHA in determining how it invests time and 
resources—as different facilities may dispro-
portionately serve a higher number of vul-
nerable individuals. Beyond the VHA, these 
findings have generalizable lessons for the US 
health care system, which has come to recog-
nize how these risk factors impact patients’ 
health.10 

Although the proportion of individuals 
with any of the assessed SDoH identified by 
administrative data was low, our findings are 
in line with recent studies that showed other 
risk factors such as social isolation (0.65%), 
housing issues (0.19%), and financial strain 

(0.07%) had similarly low prevalence.8,11 Al-
though the exact prevalence of such factors 
remains unclear, these findings highlight that 
SDoH do not appear to be well documented 
in administrative data. Low coding rates are 
likely due to the fact that SDoH administra-
tive codes are not tied to financial reimburse-
ment—thus not incentivizing their use by 
clinicians or hospital systems. 

In 2014, an Institute of Medicine report 
suggested that collection of SDoH in elec-
tronic health data as a means to better em-
power clinicians and health care systems to 
address social disparities and further support 
research in SDoH.12 Since then, data collec-
tion using SDoH screening tools has become 
more common across settings, but is not con-
sistently translated to standardized data due 
to lack of industry consensus and technical 
barriers.13 To improve this process, the Cen-
ters for Medicare and Medicaid Services cre-
ated “z-codes” for the ICD-10 classification 
system—a subset of codes that are meant 
to better capture patients’ underlying social 
risk.14 It remains to be seen if such adminis-
trative codes have improved the documenta-
tion of SDoH. 

As health care systems have grown to un-
derstand the impact of SDoH on health out-
comes, other means of collecting these data 
have evolved.1,10 For example, NLP-based  
extraction methods and electronic screening 

FIGURE Facility-Level Variation of Social Risk Factors in VA 
Acute Care Facilities 

Point estimates with 95% CI. A, Proportion of patients with any SDoH extracted using ICD-9 and clinic 
description codes; (b) Proportion of patients with any SDoH who lives alone, extracted using natural lan-
guage processing.

Abbreviations: ICD-9, International Classification of Diseases–9th Revision; SDoH, social determinant of health.
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tools have been proposed and utilized as al-
ternative for obtaining this information. Our 
findings suggest that some of these measures 
(eg, lives alone) often may be documented as 
part of routine care in the electronic health 
record, thus highlighting NLP as a tool to 
obtain such data. However, other stud-
ies using NLP technology to extract SDoH 
have shown this technology is often com-
plicated by quality issues (ie, missing data), 
complex methods, and poor integration with 
current information technology infrastruc-
tures—thus limiting its use in health care  
delivery.15-18

While variance among SDoH across 
a national health care system is natural, it 
remains an important systems-level char-
acteristic that health care leaders and poli-
cymakers should appreciate. As health care 
systems disperse financial resources and ini-
tiate quality improvement initiatives to ad-
dress SDoH, knowing that not all facilities 
are equally affected by SDoH should im-
pact allocation of such resources and ener-
gies. Although previous work has highlighted 
regional and neighborhood levels of varia-
tion within the VHA and other health care 
systems, to our knowledge, this is the first 
study to examine variability at the facility-
level within the VHA.2,4,13,19 

Limitations
There are several limitations to this study. 
First, though our findings are in line with 
previous data in other health care systems, 
generalizability beyond the VA, which pri-
marily cares for older, male patients, may 
be limited.8 Though, as the nation’s largest 
health care system, lessons from the VHA can 
still be useful for other health care systems 
as they consider SDoH variation. Second, 
among the many SDoH previously identi-
fied to impact health, our analysis only fo-
cused on 5 such variables. Administrative 
and medical record documentation of other 
SDoH may be more common and less vari-
able across institutions. Third, while our data 
suggests facility-level variation in these mea-
sures, this may be in part related to variation 
in coding across facilities. However, the sin-
gle SDoH variable extracted using NLP also 
varied at the facility-level, suggesting that 
coding may not entirely drive the variation 
observed.

CONCLUSIONS
As US health care systems continue to ad-
dress SDoH, our findings highlight the vari-
ous challenges in obtaining accurate data on 
a patient’s social risk. Moreover, these find-
ings highlight the large variability that exists 
among institutions in a national integrated 
health care system. Future work should ex-
plore the prevalence and variance of other 
SDoH as a means to help guide resource al-
location and prioritize spending to better ad-
dress SDoH where it is most needed.  
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