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Ensuring the delivery of safe and cost-effective care is 
the core mission of hospitals,1 but nearly 90% of un-
planned patient transfers to critical care may be the 
result of a new or worsening condition.2 The cost of 

treatment of sepsis, respiratory failure, and arrest, which are 
among the deadliest conditions for hospitalized patients,3,4 are 
estimated to be $30.7 billion annually (8.1% of national hospital 
costs).5 As many as 44% of adverse events may be avoidable,6 
and concerns about patient safety have motivated hospitals 
and health systems to find solutions to identify and treat dete-

riorating patients expeditiously. Evidence suggests that many 
hospitalized patients presenting with rapid decline showed 
warning signs 24-48 hours before the event.7 Therefore, ample 
time may be available for early identification and intervention 
in many patients.

As early as 1997, hospitals have used early warning systems 
(EWSs) to identify at-risk patients and proactively inform clini-
cians.8 EWSs can predict a proportion of patients who are at risk 
for clinical deterioration (this benefit is measured with sensitivity) 
with the tradeoff that some alerts are false (as measured with 
positive predictive value [PPV] or its inverse, workup-to-detec-
tion ratio [WDR]9-11). Historically, EWS tools were paper-based 
instruments designed for fast manual calculation by hospital 
staff. Many aggregate-weighted EWS instruments continue to 
be used for research and practice, including the Modified Early 
Warning Systems (MEWS)12 and National Early Warning System 
(NEWS).13,14 Aggregate-weighted EWSs lack predictive preci-
sion because they use simple addition of a few clinical param-
eter scores, including vital signs and level of consciousness.15 
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BACKGROUND: The clinical deterioration of patients 
in general hospital wards is an important safety issue. 
Aggregate-weighted early warning systems (EWSs) may 
not detect risk until patients present with acute decline.

PURPOSE: We aimed to compare the prognostic test 
accuracy and clinical workloads generated by EWSs using 
statistical modeling (multivariable regression or machine 
learning) versus aggregate-weighted tools.

DATA SOURCES: We searched PubMed and CINAHL 
using terms that described clinical deterioration and use of 
an advanced EWS.

STUDY SELECTION: The outcome was clinical 
deterioration (intensive care unit transfer or death) of adult 
patients on general hospital wards. We included studies 
published from January 1, 2012 to September 15, 2018.

DATA EXTRACTION: Following 2015 PRIMSA 
systematic review protocol guidelines; 2015 TRIPOD 
criteria for predictive model evaluation; and the 
Cochrane Collaboration guidelines, we reported model 

performance, adjusted positive predictive value (PPV), and 
conducted simulations of workup-to-detection ratios.

DATA SYNTHESIS: Of 285 articles, six studies reported 
the model performance of advanced EWSs, and five 
were of high quality. All EWSs using statistical modeling 
identified at-risk patients with greater precision than 
aggregate-weighted EWSs (mean AUC 0.80 vs 0.73). 
EWSs using statistical modeling generated 4.9 alerts to 
find one true positive case versus 7.1 alerts in aggregate-
weighted EWSs; a nearly 50% relative workload increase 
for aggregate-weighted EWSs.

CONCLUSIONS: Compared with aggregate-weighted tools, 
EWSs using statistical modeling consistently demonstrated 
superior prognostic performance and generated less 
workload to identify and treat one true positive case. 
A standardized approach to reporting EWS model 
performance is needed, including outcome definitions, 
pretest probability, observed and adjusted PPV, and workup-
to-detection ratio. Journal of Hospital Medicine 2019;14:161-
169. © 2019 Society of Hospital Medicine 
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Recently, a new category has emerged, which use multivariable 
regression or machine learning; we refer to this category as 
“EWSs using statistical modeling”. This type of EWS uses more 
computationally intensive risk stratification methods to predict 
risk16 by adjusting for a larger set of clinical covariates, thereby 
reducing the degree of unexplained variance. Although these 
EWSs are thought to be more precise and to generate fewer 
false positive alarms compared with others,14,17-19 no review to 
date has systematically synthesized and compared their perfor-
mance against aggregate-weighted EWSs.

Purpose
The purpose of this systematic review was to evaluate the re-
cent literature regarding prognostic test accuracy and clinical 
workloads generated by EWSs using statistical modeling ver-
sus aggregate-weighted systems.

METHODS
Search Strategy
Adhering to PRISMA protocol guidelines for systematic re-
views, we searched the peer-reviewed literature in PubMed 
and CINAHL Plus, as well as conference proceedings and on-
line repositories of patient safety organizations published be-
tween January 1, 2012 and September 15, 2018. We selected 
this timeframe because EWSs using statistical modeling are 
relatively new approaches compared with the body of evi-
dence concerning aggregate-weighted EWSs. An expert PhD 
researcher confirmed the search results in a blinded indepen-
dent query.

Inclusion and Exclusion Criteria	
We included peer-reviewed articles reporting the area under 
the receiver operator curve (AUC),20 or the equivalent c-sta-
tistic, of models predicting clinical deterioration (measured 
as the composite of transfer to intensive care unit (ICU) and/
or mortality) among adult patients in general hospital wards. 
We excluded studies if they did not compare an EWS using 
statistical modeling with an aggregate-weighted EWS, did not 
report AUC, or only reported on an aggregate-weighted EWS. 
Excluded settings were pediatrics, obstetrics, emergency de-
partments, ICUs, transitional care units, and oncology. We also 
excluded studies with samples limited to physiological moni-
toring, sepsis, or postsurgical subpopulations.

Data Abstraction
Following the TRIPOD guidelines for the reporting of predic-
tive models,21 and the PRISMA and Cochrane Collaboration 
guidelines for systematic reviews,22-24 we extracted study char-
acteristics (Table 1), sample demographics (Appendix Table 
4), model characteristics and performance (Appendix Table 5), 
and level of scientific evidence and risk of bias (Appendix Table 
6). To address the potential for overfitting, we selected model 
performance results of the validation dataset rather than the 
derivation dataset, if reported. If studies reported multiple 
models in either EWS category, we selected the best-perform-
ing model for comparison.

Measures of Model Performance
Because predictive models can achieve good case identifi-
cation at the expense of high clinical workloads, an assess-
ment of model performance would be incomplete without 
measures of clinical utility. For clinicians, this aspect can be 
measured as the model’s PPV (the percentage of true posi-
tive alerts among all alerts), or more intelligibly, as the WDR, 
which equals 1/PPV. WDR indicates the number of patients 
requiring evaluation to identify and treat one true positive 
case.9-11 It is known that differences in event rates (prevalence 
or pretest probability) influence a model’s PPV25 and its re-
ciprocal WDR. However, for systematic comparison, PPV and 
WDR can be standardized using a fixed representative event 
rate across studies.24,26 We abstracted the reported PPV and 
WDR, and computed standardized PPV and WDR for an event  
rate of 4%.

Other measures included the area under the receiver op-
erator curve (AUC),20 sensitivity, and specificity. AUC plots a 
model’s false positive rate (x-axis) against its true positive rate 
(y-axis), with an ideal scenario of very high y-values and very 
low x-values.27 Sensitivity (the model’s ability to detect a true 
positive case among all cases) and specificity (the model’s abil-
ity to detect a true noncase among all noncases28) are influ-
enced by chosen alert thresholds. It is incorrect to assume that 
a given model produces only one sensitivity/specificity result; 
for systematic comparison, we therefore selected results in the 
50% sensitivity range, and separately, in the 92% specificity 
range for EWSs using statistical modeling. Then, we simulated 
a fixed sensitivity of 0.51 and assumed specificity of 0.87 in ag-
gregate-weighted EWSs.

RESULTS
Search Results
The PubMed search for “early warning score OR early warn-
ing system AND deterioration OR predict transfer ICU” re-
turned 285 peer-reviewed articles. A search on CINAHL Plus 
using the same filters and query terms returned 219 articles 
with no additional matches (Figure 1). Of the 285 articles, we 
excluded 269 during the abstract screen and 10 additional 
articles during full-text review (Figure 1). A final review of the 
reference lists of the six selected studies did not yield addi-
tional articles.

Study Characteristics
There were several similarities across the selected studies (Ta-
ble 1). All occurred in the United States; all compared their 
model’s performance against at least one aggregate-weighted 
EWS model;14,17-19,29 and all used retrospective cohort designs. 
Of the six studies, one took place in a single hospital;29 three 
pooled data from five hospitals;17,18,30 and two occurred in a 
large integrated healthcare delivery system using data from 14 
and, subsequently, 21 hospitals.14,19 The largest study14 includ-
ed nearly 650,000 admissions, while the smallest study29 report-
ed slightly less than 7,500 admissions. Of the six studies, four 
used multivariable regression,14,17,19,29 and two used machine 
learning techniques for outcome prediction.18,30
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Outcome Variables
The primary outcome for inclusion in this review was clinical 
deterioration measured by the composite of transfer to ICU 
and some measure of mortality. Churpek et al.10,11 and Green 
et al.30 also included cardiac arrest, and Alvarez et al.22 included 
respiratory compromise in their outcome composite.

Researchers used varying definitions of mortality, including 
“death outside the ICU in a patient whose care directive was 
full code;”14,19 “death on the wards without attempted resus-
citation;”17,18 “an in-hospital death in patients without a DNR 
order at admission that occurred on the medical ward or in ICU 
within 24 hours after transfer;”29 or “death within 24 hours.”30

Predictor Variables
We observed a broad assortment of predictor variables. All 
models included vital signs (heart rate, respiratory rate, blood 
pressure, and venous oxygen saturation); mental state; labora-
tory data; age; and sex. Additional variables included comor-
bidity, shock index,31 severity of illness score, length of stay, 
event time of day, season, admission category, and length of 
stay,14,19 among others.

Model Performance
Reported PPV ranged from 0.16 to 0.42 (mean = 0.27) in EWSs 
using statistical modeling and 0.15 to 0.28 (mean = 0.19) in 

TABLE 1. Characteristics of Six Early Warning System Studies Using Statistical Modeling for the Detection  
of Deterioration Risk

Study Setting; Location
No. of Hospitals; Time Period;  
Hospitalizations; Event Rate Study Purpose; Outcome

Research Design; 
Model; Missing Data

Escobar et al., 201219 Health system

Northern California, 
United States

14 hospitals with EHRs deployed

November 2006-December 2009

39,782 shift units

4,036 events

Event rate: 0.102

Evaluation of EDIP multivariable regression model 
using EHR data and comparing results against MEWS 
(an aggregate-weighted tool)

Composite outcome: transfer to ICU, death on ward 
when patient was full code

Retrospective case-control study

Multivariable logistic regression

Alvarez et al., 201329 Academic medical 
center

Dallas, Texas, United 
States

One hospital

May 2009-March 2010

7,466 hospitalizations

585 events

Event rate: 0.078

Comparison of multivariable regression model vs 
MEWS

Composite outcome: cardiopulmonary arrest, acute 
respiratory compromise, unexpected death, transfer 
to ICU

Retrospective cohort study

Multivariable logistic regression

Management/adjustment of missing data not 
discussed

Churpek et al., 201417 University health 
system

Illinois, United States

Five medical centers (One tertiary academic, 
four from a university health system)

November 2008-January 2013

269,999 hospitalizations

16,452 events

Event rate: 0.061

Development and validation of a deterioration 
risk score using EHR data, comparison of model 
performance against VitalPAC EWS

Composite outcome: cardiac arrest, ICU transfer, 
death on ward

Retrospective cohort study

Multivariable survival analysis

Management/adjustment of missing data: 
carried previous value forward or imputed 
median value if no previous value was available

Churpek et al., 201618 University health 
system

Illinois, United States

Five medical centers (one tertiary academic, 
four from a university health system)

November 2008-January 2013

269,999 hospitalizations

16,452 events

Event rate: 0.061

Comparison of different machine learning algorithms, 
multivariable regression model, and MEWS

Composite outcome: cardiac arrest, ICU transfer, 
death on ward without attempted resuscitation

Retrospective cohort study

Machine learning (random forest was the best-
performing model)

Management/adjustment of missing data: 
carried previous value forward or imputed 
median value if no previous value was available

Kipnis et al., 201614 Health system

Northern California, 
United States

21 hospitals

January 2010-December 2013

649,418 hospitalizations

19,153 events

Event rate: 0.030

Comparison of AAM an automated electronic early 
warning system using EHR data, eCART (Churpek et 
al., 2014) and NEWS (Kovacs et al. 2016)

Composite outcome: transfer to ICU,

death on ward when patient was full code

Retrospective cohort study, predictive risk for 
death, unanticipated ICU transfer followed/not 
followed by a surgical intervention

Multivariable logistic regression

Missing data were imputed

Green et al., 201830 University health 
system

Illinois, United States

Five medical centers (one tertiary academic, 
four from a university health system)

November 2008-August 2013

107,868 hospitalizations

6,142 events

Event rate: 0.057

Comparison of eCART machine learning model 
(random forest), “Between the Flags” calling criteria, 
MEWS, and NEWS

Composite outcome: cardiac arrest, ICU transfer, 
death on ward within 24 hours

Retrospective cohort study

Machine learning (random forest)

(excluded patients used for model derivation in 
previous work by Churpek et al.)

Abbreviations: AAM, advance monitor alarm; EDIP, early detection of impending physiologic deterioriation; EHR, electronic health record; EWS, early warning system; ICU, intensive care unit; 
MEWS, modified early warning system; NEWS, national early warning system.
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aggregate-weighted EWS models. The weighted mean stan-
dardized PPV, adjusted for an event rate of 4% across studies 
(Table 2), was 0.21 in EWSs using statistical modeling versus 
0.14 in aggregate-weighted EWS models (simulated at 0.51 
sensitivity and 0.87 specificity).

Only two studies14,19 reported the WDR metric (alerts gener-
ated to identify one true positive case) explicitly. Based on the 
above PPV results, EWSs using statistical modeling generated 
a standardized WDR of 4.9 in models using statistical model-
ing versus 7.1 in aggregate-weighted models (Figure 2). The 
delta of 2.2 evaluations to find and treat one true positive case 
equals a 45% relative increase in RRT evaluation workloads us-
ing aggregate-weighted EWSs.

AUC values ranged from 0.77 to 0.85 (weighted mean = 0.80) 

in EWSs using statistical modeling, indicating good model dis-
crimination. AUCs of aggregate-weighted EWSs ranged from 
0.70 to 0.76 (weighted mean = 0.73), indicating fair model dis-
crimination (Figure 2). The overall AUC delta was 0.07. How-
ever, our estimates may possibly be favoring EWSs that use 
statistical modeling by virtue of their derivation in an original 
research population compared with aggregate-weighted EWSs 
that were derived externally. For example, sensitivity analysis 
of eCART,18 an EWS using machine learning, showed an AUC 
drop of 1% in a large external patient population,14 while NEWS 
AUCs13 dropped between 11% and 15% in two large external 
populations (Appendix Table 7).14,30 For hospitals adopting an 
externally developed EWS using statistical modeling, these re-
sults suggest that an AUC delta of approximately 5% can be ex-

FIG 1. PRISMA Flow Diagram of Study Selection. Adapted from Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred 
Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1.

Abbreviations: AHRQ, Agency for Healthcare Research and Quality; EWS, early warning system; IHI, Institute for Healthcare Improvement.
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pected and 7% for an internally developed EWS.
The models’ sensitivity ranged from 0.49 to 0.54 (mean 

= 0.51) for EWSs using statistical modeling and 0.39 to 0.50 
(mean = 0.43). These results were based on chosen alert vol-
ume cutoffs. Specificity ranged from 0.90 to 0.94 (mean = 0.92) 
in EWSs using statistical modeling compared with 0.83 to 0.93 
(mean = 0.89) in aggregate-weighted EWS models. At the 0.51 
sensitivity level (mean sensitivity of reported EWSs using statis-
tical modeling), aggregate-weighted EWSs would have an es-
timated specificity of approximately 0.87. Conversely, to reach 
a specificity of 0.92 (mean specificity of reported EWSs using 
statistical modeling, aggregate-weighted EWSs would have a 
sensitivity of approximately 0.42 compared with 0.50 in EWSs 
using statistical modeling (based on three studies reporting 
both sensitivity and specificity or an AUC graph).

Risk of Bias Assessment
We scored the studies by adapting the Cochrane Collabora-
tion tool for assessing risk of bias 32 (Appendix Table 5). Of the 
six studies, five received total scores between 1.0 and 2.0 (in-
dicating relatively low bias risk), and one study had a score of 
3.5 (indicating higher bias risk). Low bias studies14,17-19,30 used 
large samples across multiple hospitals, discussed the choice 
of predictor variables and outcomes more precisely, and re-
ported their measurement approaches and analytic methods 
in more detail, including imputation of missing data and mod-
el calibration.

DISCUSSION
In this systematic review, we assessed the predictive ability of 
EWSs using statistical modeling versus aggregate-weighted 
EWS models to detect clinical deterioration risk in hospitalized 
adults in general wards. From 2007 to 2018, at least five sys-
tematic reviews examined aggregate-weighted EWSs in adult 
inpatient settings.33-37 No systematic review, however, has syn-
thesized the evidence of EWSs using statistical modeling.

The recent evidence is limited to six studies, of which five had 
favorable risk of bias scores. All studies included in this review 
demonstrated superior model performance of the EWSs using 
statistical modeling compared with an aggregate-weighted 
EWS, and at least five of the six studies employed rigor in de-
sign, measurement, and analytic method. The AUC absolute 
difference between EWSs using statistical modeling and ag-
gregate-weighted EWSs was 7% overall, moving model per-
formance from fair to good (Table 2; Figure 2). Although this 
increase in discriminative power may appear modest, it trans-
lates into avoiding a 45% increase in WDR workload generat-
ed by an aggregate-weighted EWS, approximately two patient 
evaluations for each true positive case.

Results of our review suggest that EWSs using statistical 
modeling predict clinical deterioration risk with better preci-
sion. This is an important finding for the following reasons: (1) 
Better risk prediction can support the activation of rescue; (2) 
Given federal mandates to curb spending, the elimination of 
some resource-intensive false positive evaluations supports 
high-value care;38 and (3) The Quadruple Aim39 accounts for 

clinician wellbeing. EWSs using statistical modeling may offer 
benefits in terms of clinician satisfaction with the human–sys-
tem interface because better discrimination reduces the daily 
evaluation workload/cognitive burden and because the reduc-
tion of false positive alerts may reduce alert fatigue.40,41

Still, an important issue with risk detection is that it is un-
known which percentage of patients are uniquely identified 
by an EWS and not already under evaluation by the clinical 
team. For example, a recent study by Bedoya et al.42 found 
that using NEWS did not improve clinical outcomes and nurs-
es frequently disregarded the alert. Another study43 found 
that the combined clinical judgment of physicians and nurs-
es had an AUC of 0.90 in predicting mortality. These results 
suggest that at certain times, an EWS alert may not add new 
useful information for clinicians even when it correctly iden-
tifies deterioration risk. It remains difficult to define exactly 
how many patients an EWS would have to uniquely identify 
to have clinical utility.

Even EWSs that use statistical modeling cannot detect 
all true deterioration cases perfectly, and they may at times 
trigger an alert only when the clinical team is already aware 
of a patient’s clinical decline. Consequently, EWSs using sta-
tistical modeling can at best augment and support—but not 
replace—RRT rounding, physician workup, and vigilant front-
line staff. However, clinicians, too, are not perfect, and the 
failure-to-rescue literature suggests that certain human factors 
are antecedents to patient crises (eg, stress and distraction,44-46 
judging by precedent/experience,44,47 and innate limitations of 
human cognition47). Because neither clinicians nor EWSs can 
predict deterioration perfectly, the best possible rescue re-
sponse combines clinical vigilance, RRT rounding, and EWSs 
using statistical modeling as complementary solutions.

Our findings suggest that predictive models cannot be 
judged purely on AUC (in fact, it would be ill-advised) but 
also by their clinical utility (expressed in WDR and PPV): How 
many patients does a clinician need to evaluate?9-11 Precision 
is not meaningful if it comes at the expense of unmanageable 
evaluation workloads, and our findings suggest that clinicians 
should evaluate models based on their clinical utility. Hospi-
tals considering adoption of an EWS using statistical modeling 
should consider that externally developed EWSs appear to 
experience a performance drop when applied to a new pa-
tient population; a slightly higher WDR and slightly lower AUC 
can be expected. EWSs using statistical modeling appear to 
perform best when tailored to the targeted patient population 
(or are derived in-house). Model depreciation over time will 
likely require recalibration. In addition, adoption of a machine 
learning algorithm may mean that original model results are 
obscured by the black box output of the algorithm.48-50

Findings from this systematic review are subject to several 
limitations. First, we applied strict inclusion criteria, which led 
us to exclude studies that offered findings in specialty units 
and specific patient subpopulations, among others. In the 
interest of systematic comparison, our findings are limited to 
general wards. We also restricted our search to recent stud-
ies that reported on models predicting clinical deterioration, 
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which we defined as the composite of ICU transfer and/or 
death. Clinically, deteriorating patients in general wards either 
die or are transferred to ICU. This criterion resulted in exclusion 
of the Rothman Index,51 which predicts “death within 24 hours” 
but not ICU transfer. The AUC in this study was higher than 
those selected in this review (0.93 compared to 0.82 for MEWS; 
AUC delta: 0.09). The higher AUC may be a function of the out-
come definition (30-day mortality would be more challenging 
to predict). Therefore, hospitals or health systems interested in 
purchasing an EWS using statistical modeling should carefully 
consider the outcome selection and definition.

Second, as is true for systematic reviews in general,52 
the degree of clinical and methodological heterogeneity 
across the selected studies may limit our findings. Studies 
occurred in various settings (university hospital, teaching 
hospitals, and community hospitals), which may serve di-
verging patient populations. We observed that studies in 
university-based settings had a higher event rate ranging 

from 5.6% to 7.8%, which may result in higher PPV results in 
these settings. However, this increase would apply to both 
EWS types equally. To arrive at a “true” reflection of model 
performance, the simulations for PPV and WDR have used 
a more conservative event rate of 4%. We observed heter-
ogenous mortality definitions, which did not always account 
for the reality that a patient’s death may be an appropriate 
outcome (ie, it was concordant with treatment wishes in the 
context of severe illness or an end-of-life trajectory). Stud-
ies also used different sampling procedures; some allowed 
multiple observations although most did not. The variation 
in sampling may change PPV and limit our systematic com-
parison. However, regardless of methodological differences, 
our review suggests that EWSs using statistical modeling per-
form better than aggregate-weighted EWSs in each of the  
selected studies.

Third, systematic reviews may be subject to the issue of pub-
lication bias because they can only compare published results 

TABLE 2. Early Warning System Model Performance in Five Studies Using Statistical Modeling versus Aggregate-
Weighted Scores from January 1, 2012 to September 15, 2018

Alvarez et al.  
(2013)

Churpek et al. 
(2014)

Churpek et al. 
(2016)

Kipnis et al.  
(2016)

Green et al.  
(2018)

Total Simulated estimate

Early Warning Systems Using Statistical Modeling

AUC (95% CI) 0.85 (0.82-0.87) 0.77 (0.76-0.77) 0.8 (0.80-0.80) 0.82 (0.81-0.83) 0.8 (0.80-0.80) 0.80a 0.80a

Sensitivity 0.52 0.54 0.50 0.49 0.50 0.51b 0.51b

Specificity 0.94 0.90 0.93 0.92 0.90 0.92b 0.92b

PPV 0.42 0.20 0.32 0.16 0.23 0.27b 0.21b

Standardized PPV 0.27 0.18 0.23 0.20 0.17 0.21b 0.21b

WDR 2.4 4.9 3.2 6.3 4.3 4.2b 4.9b

Standardized WDR 3.8 5.4 4.4 4.9 5.8 4.9b 4.9b

Aggregate-Weighted Early Warning Systems

AUC (95% CI) 0.75 (0.71-0.78) 0.73 (0.72-0.73) 0.7 (0.70-0.70) 0.76 (0.75-0.78) 0.72 (0.72-0.72) 0.73a 0.73a

Sensitivity 0.42 0.39 0.50 0.40 0.42 0.43b 0.51

Specificity 0.91 0.90 0.83 0.93 0.90 0.89b 0.87

PPV 0.28 0.16 0.16 0.15 0.20 0.19b 0.14

Standardized PPV 0.16 0.14 0.11 0.19 0.15 0.15b 0.14

WDR 3.5 6.4 6.2 6.7 4.9 5.6b 7.1

Standardized WDR 6.1 7.2 9.2 5.2 6.7 6.9b 7.1

Deltas

AUC delta 0.10 0.04 0.10 0.06 0.08 0.07 0.07

Standardized WDR delta 2.4 1.7 4.8 0.3 0.9 2.0 2.2

Note: We removed Escobar et al. (2012) from analysis because Kipnis et al. (2016) used the same model.
a Weighted
b Mean

Abbreviations: AUC, area under the curve; PPV, positive predictor value; WDR, workup to detection ratio.
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and could possibly omit an unknown number of unpublished 
studies. However, the selected studies uniformly demonstrat-
ed similar model improvements, which are plausibly related 
to the larger number of covariates, statistical methods, and 
shrinkage of random error.

Finally, this review was limited to the comparison of observa-
tional studies, which aimed to answer how the two EWS classes 
compared. These studies did not address whether an alert had 
an impact on clinical care and patient outcomes. Results from 
at least one randomized nonblinded controlled trial suggest 

that alert-driven RRT activation may reduce the length of stay 
by 24 hours and use of oximetry, but has no impact on mortal-
ity, ICU transfer, and ICU length of stay.53

CONCLUSION
Our findings point to three areas of need for the field of pre-
dictive EWS research: (1) a standardized set of clinical deterio-
ration outcome measures, (2) a standardized set of measures 
capturing clinical evaluation workload and alert frequency, and 
(3) cost estimates of clinical workloads with and without deploy-

FIG 2. Early Warning System Model Discrimination and Standardized Workup to Detection Ratios in 6 Studies Using Statistical Modeling vs Aggregate-Weighted 
Scores from January 1, 2012 to September 18, 2018

Note: AUC describes the models’ ability to predict an outcome accurately, with 0.50 indicating no ability to predict an outcome. For AUC higher is better. Standardized WDR: Number needed 
to find one true deterioration case. For WDR, lower is better. 

Abbreviations: AUC, area under the curve; EWS, early warning system;  WDR, workup to detection ratio.
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ment of an EWS using statistical modeling. Given the present 
divergence of outcome definitions, EWS research may benefit 
from a common “clinical deterioration” outcome standard, in-
cluding transfer to ICU, inpatient/30-day/90-day mortality, and 
death with DNR, comfort care, or hospice. The field is lacking a 
standardized clinical workload measure and an understanding 
of the net percentage of patients uniquely identified by an EWS.

By using predictive analytics, health systems may be better 
able to achieve the goals of high-value care and patient safety 
and support the Quadruple Aim. Still, gaps in knowledge exist 
regarding the measurement of the clinical processes triggered 
by EWSs, evaluation workloads, alert fatigue, clinician burnout 
associated with the human-alert interface, and costs versus 
benefits. Future research should evaluate the degree to which 
EWSs can identify risk among patients who are not already un-
der evaluation by the clinical team, assess the balanced treat-
ment effects of RRT interventions between decedents and 
survivors, and investigate clinical process times relative to the 
time of an EWS alert using statistical modeling.
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