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Acute kidney injury (AKI) is increasingly common in 
the hospitalized patient1,2 with recent adult and 
pediatric multinational studies reporting AKI rates 
of 57% and 27%, respectively.3,4 The development 

of AKI is associated with significant adverse outcomes includ-
ing an increased risk of mortality.5-7 For those that survive, the 
history of AKI may contribute to a lifetime of impaired health 
with chronic kidney disease.8,9 This is particularly concerning 
for pediatric patients as AKI may impact morbidity for many 
decades, influence available therapies for these morbidities, 
and ultimately contribute to a shortened lifespan.10 

AKI in the hospitalized patient is no longer accepted as an 
unfortunate and unavoidable consequence of illness or the 
indicated therapy. Currently, there is strong interest in this 
hospital-acquired condition with global initiatives aimed at 
increased prevention and early detection and treatment of 
AKI.11,12 To this objective, risk stratification tools or prediction 
models could assist clinicians in decision making. Numerous 

studies have tested AKI prediction models either in particular 
high-risk populations or based on associated comorbidities, 
biomarkers, and critical illness scores. These studies are pre-
dominantly in adult populations, and few have been externally 
validated.13 While associations between certain medications 
and AKI are well known, an AKI prediction model that is ap-
plicable to pediatric or adult populations and is based on 
medication exposure is difficult. However, there is a growing 
recognition of the potential to develop such a model using the 
electronic health record (EHR).14 

In 2013, Seattle Children’s Hospital (SCH) implemented a 
nephrotoxin and AKI detection system to assist in clinical de-
cision making within the EHR. This system instituted the au-
tomatic ordering of serum creatinines to screen for AKI when 
the provider ordered three or more medications that were sus-
pected to be nephrotoxic. Other clinical factors such as the di-
agnoses or preexisting conditions were not considered in the 
decision-tool algorithm. This original algorithm (Algorithm 1) 
was later modified and the list of suspected nephrotoxins was 
expanded (Table 1) in order to align with a national pediatric 
AKI collaborative (Algorithm 2). However, it was unclear wheth-
er the algorithm modification would improve AKI detection.

The present study had two objectives. The first was to eval-
uate the impact of the modifications on the sensitivity and 
specificity of our system. The second objective, if either the 
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BACKGROUND: In the hospitalized patient, nephrotoxin 
exposure is one potentially modifiable risk factor for acute 
kidney injury (AKI). Clinical decision support based on 
nephrotoxin ordering was developed at our hospital to 
assist inpatient providers with the prevention or mitigation 
of nephrotoxin-related AKI. The initial decision support 
algorithm (Algorithm 1) was modified in order to align with 
a national AKI collaborative (Algorithm 2).

OBJECTIVE: Our first aim was to determine the impact 
of this alignment on the sensitivity and specificity of our 
nephrotoxin-related AKI detection system. Second, if 
the system efficacy was found to be suboptimal, we then 
sought to develop an improved model. 

DESIGN: A retrospective cohort study in hospitalized 
patients between December 1, 2013 and November 30, 
2015 (N = 14,779) was conducted. 

INTERVENTIONS: With the goal of increasing 
nephrotoxin-related AKI detection sensitivity, a novel 

model based on the identification of combinations of high-
risk medications was developed. 

RESULTS: Application of the algorithms to our 
nephrotoxin use and AKI data resulted in sensitivities of 
46.9% (Algorithm 1) and 43.3% (Algorithm 2, P = .22) and 
specificities of 73.6% and 89.3%, respectively (P < .001). 
Our novel AKI detection model was able to deliver a 
sensitivity of 74% and a specificity of 70%. 

CONCLUSIONS: Modifications to our AKI detection 
system by adopting Algorithm 2, which included an 
expanded list of nephrotoxins and equally weighting each 
medication, did not improve our nephrotoxin-related 
AKI detection. It did improve our system’s specificity. 
Sensitivity increased by >50% when we applied a novel 
algorithm based on observed data with identification 
of key medication combinations. Journal of Hospital 
Medicine 2019;14:462-467. Published online first April 8, 
2019. © 2019 Society of Hospital Medicine
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sensitivity or specificity was determined to be suboptimal, was 
to develop an improved model for nephrotoxin-related AKI 
detection. Having either the sensitivity or the specificity under 
50% would be equivalent to or worse than a random guess, 
which we would consider unacceptable.

METHODS 
Context 
SCH is a tertiary care academic teaching hospital affiliated with 
the University of Washington School of Medicine, Harborview 
Medical Center, and the Seattle Cancer Care Alliance. The 
hospital has 371 licensed beds and approximately 18 medical 
subspecialty services. 

Study Population 
This was a retrospective cohort study examining all patients 
ages 0-21 years admitted to SCH between December 1, 2013 
and November 30, 2015. The detection system was modified 
to align with the national pediatric AKI collaborative, Neph-
rotoxic Injury Negated by Just-in-Time Action (NINJA) in No-
vember 2014. Both acute care and intensive care patients were 
included (data not separated by location). Patients who had 
end-stage kidney disease and were receiving dialysis and pa-
tients who were evaluated in the emergency department with-
out being admitted or admitted as observation status were 
excluded from analysis. Patients were also excluded if they did 
not have a baseline serum creatinine as defined below. 

Study Measures 
AKI is defined at SCH using the Kidney Disease: Improving 
Global Outcomes Stage 1 criteria as a guideline. The diagno-
sis of AKI is based on an increase in the baseline serum creat-
inine by 0.3 mg/dL or an increase in the serum creatinine by 
>1.5 times the baseline assuming the incoming creatinine is 
0.5 mg/dL or higher. For our definition, the increase in serum 
creatinine needs to have occurred within a one-week time-
frame and urine output is not a diagnostic criterion.15 Baseline 
serum creatinine is defined as the lowest serum creatinine in 
the previous six months. Forty medications were classified as 
nephrotoxins based on previous analysis16 and adapted for our 
institutional formulary. 

Statistical Analysis 
To evaluate the efficacy of our systems in detecting nephro-
toxin-related AKI, the sensitivity and the specificity using both 
our original algorithm (Algorithm 1) and the modified algo-
rithm (Algorithm 2) were generated on our complete data set. 
To test sensitivity, the proportion of AKI patients who would 
trigger alert using Algorithm 1 and then with Algorithm 2 
was identified. Similarly, to test specificity, the proportion of 
non-AKI patients who did not trigger an alert by the surveil-
lance systems was identified. The differences in sensitivity and 
specificity between the two algorithms were evaluated using 
two-sample tests of proportion.

The statistical method of Combinatorial Inference has been 
utilized in studies of cancer biology17 and in genomics.18 A vari-

ation of this approach was used in this study to identify the 
specific medication combinations most associated with AKI. 
First, all of the nephrotoxic medications and medication com-
binations that were prescribed during our study period were 
identified from a data set (ie, a training set) containing 75% of 
all encounters selected at random without replacement. Us-
ing this training set, the prevalence of each medication com-
bination and the rate of AKI associated with each combination 
were identified. The predicted overall AKI risk of an individual 
medication is the average of all the AKI rates associated with 
each combination containing that specific medication. Also 
incorporated into the determination of the predicted AKI risk 
was the prevalence of that medication combination. 

To test our model’s predictive capability, the algorithm was 
applied to the remaining 25% of the total patient data (ie, the 
test set). The predicted AKI risk was compared with the actual 
AKI rate in the test data set. Our model’s predictive capabili-
ty was represented in a receiver operator characteristic (ROC) 
analysis. The goal was to achieve an area under the ROC curve 
(AUC) approaching one as this would reflect 100% sensitivity 
and 100% specificity, whereas an AUC of 0.5 would represent a 
random guess (50% chance of being correct).

Lastly, our final step was to use our model’s ROC curve to 
determine an optimal threshold of AKI risk for which to trigger 
an alert. This predicted risk threshold was based on our goal 
to increase our surveillance system’s sensitivity balanced with 
maintaining an acceptable specificity. 

An a priori threshold of P = .05 was used to determine sta-
tistical significance of all results. Analyses were conducted in 
Stata 12.1 (StataCorp LP, College Station, Texas) and R 3.3.2 (R 
Foundation for Statistical Computing, Vienna, Austria). A sam-
ple data set containing replication code for our model can be 
found in an online repository (https://dataverse.harvard.edu/
dataverse/chuan). This study was approved by the Seattle Chil-
dren’s Institutional Review Board. 

FIG. Receiver Operator Characteristic Curve for Acute Kidney Injury Prediction Model
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RESULTS 
Sensitivity and Specificity 
Of the patient encounters, 14,779 were eligible during the 
study period. The sensitivity of the system’s ability to identify 
nephrotoxin-related AKI decreased from 46.9% using Algo-
rithm 1 to 43.3% using Algorithm 2, a change of 3.6% (P = .22). 
The specificity increased from 73.6% to 89.3%, a change of 
15.7% (P < .001; Table 2).

Improvement of Our Nephrotoxin-Related AKI 
Detection System Using a Novel AKI Prediction 
Strategy 
A total of 838 medication combinations were identified in our 
training set and the predicted AKI risk for every medication 
combination was determined. By comparing the predicted risk 
of AKI to the actual AKI occurrence, an ROC curve with an AUC 
of 0.756 (Figure) was generated. An increase in system sensi-
tivity was prioritized when determining the optimal AKI risk at 
which the model would trigger an alert. Setting an alert thresh-
old at a predicted AKI risk of >8%, our model performed with a 
sensitivity of 74% while decreasing the specificity to 70%. 

Identification of High-Risk Nephrotoxic Medications 
and Medication Combinations 
Approximately 200 medication combinations were associated 
with >8% AKI risk, our new AKI prediction model’s alert thresh-
old. Medication combinations consisting of up to 11 concom-
itantly prescribed medications were present in our data set. 
However, many of these combinations were infrequently pre-
scribed. Further analysis, conducted in order to increase the 
clinical relevance of our findings, identified 10 medications 
or medication combinations that were both associated with a 
predicted AKI risk of >8% and that were prescribed on average 
greater than twice a month (Table 3). 

DISCUSSION 
The nephrotoxin-related AKI detection system at SCH automat-
ically places orders for serum creatinines on patients who have 
met criteria for concomitant nephrotoxin exposure. This has 
given us a robust database from which to develop our clinical 
decision-making tool. Both our original and updated systems 
were based on the absolute number of concomitant nephrotox-
ic medications prescribed.16 This is a reasonable approach given 
the complexity of building a surveillance system19 and resource 
limitations. However, a system based on observed rather than 
theoretical or in vitro data, adaptable to the institution and de-
signed for ongoing refinement, would be more valuable. 

The interest in AKI prediction tools continues to be high. 
Bedford et al. employed numerous variables and diagnostic 
codes to predict the development of AKI in adults during hos-
pitalization. They were able to produce a prediction model 
with a reasonable fit (AUC 0.72) to identify patients at higher 
risk for AKI but were less successful in their attempts to pre-
dict progression to severe AKI.20 Hodgson et al. recently devel-
oped an adult AKI prediction score (AUC 0.65-0.72) also based 
on numerous clinical factors that was able to positively impact 

TABLE 1. List of Suspected Nephrotoxins

Acyclovir

Amikacin

Amphotericin B

Aspirin

Captopril

Carboplatina

Ceftazidimeb

Cidofovir

Cisplatina

Colistimethateb

Cyclosporine

Enalapril

Enalaprilat

Foscarnet

Ganciclovirb

Gentamicin

Ibuprofen

Indomethacin

Ioversol

Ketorolac

Lisinopril

Losartan

Meloxicam

Mesalamine

Methotrexate

Mitomycin

Naproxen

Neomycin

Pamidronate

Pentamidine

Piperacillinb

Piperacillin-Tazobactam

Sirolimusb

Tacrolimus

Tenofovir

Ticarcillin/clavulanic acidb

Tobramycin

Valacyclovirb

Valganciclovirb

Valsartan

Vancomycin

Zoledronic acid

aRemoved from monitoring list with Algorithm 2.
bAdded to monitoring list with Algorithm 2.
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inpatient mortality.21 To our knowledge, our model is unique 
in that it focuses on nephrotoxins using a predicted AKI risk 
algorithm based on observed AKI rates of previously ordered 
medications/medication combinations (2-11 medications). 
Having a decision tool targeting medications gives the clini-
cian guidance that can be used to make a specific intervention 
rather than identifying a patient at risk due to a diagnosis code 
or other difficult to modify factors. 

There are abundant case studies and reports using logistic 
regression models identifying specific medications associated 
with AKI. Our choice of methodology was based on our assess-
ment that logistic regression models would be inadequate for 
the development of a real-time clinical decision-making tool 
for several reasons. Using logistic regression to explore every 
medication combination based on our medication list would 
be challenging as there are approximately 5.5 × 1010 poten-
tial medication combinations. Additionally, logistic regression 
ignores any potential interactions between the medications. 
This is an important point as medication interactions can be 
synergistic, neutral, or antagonist. Consequently, the outcome 
generated from a set of combined variables may be different 

from one generated from the sum of each variable taken inde-
pendently. Logistic regression also does not account for the 
potential prescribing trends among providers as it assumes 
that all medications or medication combinations are equally 
available at the same time. However, in practice, depending 
on numerous factors, such as hospital culture (eg, the presence 
of clinical standard work pathways), local bacterial resistance 
patterns, or medication shortages; certain medication com-
binations may occur more frequently while others not at all. 
Finally, logistic regression cannot account for the possibility of 
a medication combination occurring; therefore, logistic regres-
sion may identify a combination strongly associated with AKI 
that is rarely prescribed. 

We theorized that AKI detection would improve with the Al-
gorithm 2 modifications, including the expanded nephrotoxin 
list, which accompanied alignment with the national pediat-
ric AKI collaborative, NINJA. The finding that our surveillance 
sensitivity did not improve with this system update supported 
our subsequent objective to develop a novel nephrotoxin-re-
lated AKI decision tool or detection system using our EHR data 
to identify which specific medications and/or medication com-

TABLE 2. Accuracy Measures of Acute Kidney Injury Alert System Using Algorithms 1 and 2

True AKI Status Total

Algorithm 1 Algorithm 2

Alert No Alert Alert No Alert

Yes AKI 580 272 (46.9%a) 308 (53.1%) 251 (43.3%a) 329 (56.7%)

No AKI 14,199 3,744 (26.4%) 10,455 (73.6%b) 1,517 (10.7%) 12,682 (89.3%b)

Total 14,779 4016 10,763 1768 13,011

aSensitivity = P (Alert = 1 | AKI = 1): 46.9% for Algorithm 1 vs 43.3% for Algorithm 2.
bSpecificity = P (Alert = 0 | AKI = 0): 73.6% for Algorithm 1 vs 89.3% for Algorithm 2.

PPV = P (AKI = 1 | Alert = 1): 6.8% for Algorithm 1 vs 14.2% for Algorithm 2.

NPV = P (AKI = 0 | Alert = 0): 97.1% for Algorithm 1 vs 97.5% for Algorithm 2.

Abbreviations: AKI, acute kidney injury; NPV, negative predictive value; PPV, positive predictive value.

TABLE 3. Frequently Prescribed Medications and Medication Combinations with a Predicted Acute Kidney  
Injury Risk of >8%

Medication or Medication Combinations Percent Who Developed AKI

Gentamicin + Piperacillin-Tazobactam + Vancomycin 23 

Piperacillin-Tazobactam + Vancomycin 13

Enalapril 10

Acyclovir + Vancomycin 10

Piperacillin-Tazobactam 10

Cyclosporine 10

Vancomycin 9

Ceftazidime + Tobramycin 9

Ceftazidime + Vancomycin 8

Ibuprofen + Ioversol + Vancomycin 8

Yonekawa0560 0819.indd   465 7/25/19   11:33 AM



Yonekawa et al   |   Predicting Nephrotoxic Acute Kidney Injury

466          Journal of Hospital Medicine®    Vol 14  |  No 8  |  August 2019� An Official Publication of the Society of Hospital Medicine

binations were associated with a higher rate of AKI. However, it 
should be noted that two factors related to measurement bias 
introduce limitations to our sensitivity and specificity analyses. 
First, regarding the presence of the alert system, our system 
will order serum creatinines on patients when they have been 
exposed to nephrotoxins. Consequently, the proportion of pa-
tients with creatinines measured will increase in the nephrotox-
in-exposed patients. Unexposed patients may have AKI that is 
not detected because creatinines may not be ordered. There-
fore, there is the potential for a relative increase in AKI detec-
tion among nephrotoxin-exposed patients as compared with 
unexposed patients, which would then affect the measured 
sensitivity and specificity of the alert. Second, the automated 
alerts require a baseline creatinine in order to trigger therefore 
are unable to identify AKI among patients who do not have a 
baseline serum creatinine measurement.

Our new nephrotoxin-related AKI detection model per-
formed best when an alert was triggered for those medications 
or medication combinations with a predicted AKI risk of >8%. 
Forty-six medication combinations consisting of exactly two 
medications were determined to have a predicted AKI risk of 
>8% therefore would trigger an alert in our new model system. 
These medication combinations would not have triggered an 
alert using either of the previous system algorithms as both 
algorithms are based on the presence of three or more con-
comitant nephrotoxic medications. 

From the list of suspected nephrotoxins, we identified 11 
unique medications in 10 different combinations with a pre-
dicted AKI risk of >8% that were prescribed frequently (at 
least twice a month on average; Table 3). Notably, six out of 
10 medication combinations involved vancomycin. Piperacil-
lin-tazobactam was also represented in several combinations. 
These findings support the concern that others have reported 
regarding these two medications particularly when prescribed 
together.22,23 

Interestingly, enalapril was identified as a higher-risk medica-
tion both alone and in combination with another medication. 
We do not suspect that enalapril carries a higher risk than oth-
er angiotensin-converting enzyme (ACE) inhibitors to increase 
a patient’s serum creatinine. Rather, we suspect that in our hos-
pitalized patients, this relatively short-acting ACE inhibitor is 
commonly used in several of our vulnerable populations such 
as in cardiac and bone marrow transplant patients.

The alert threshold of our model can be adjusted to increase 
either the sensitivity or the specificity of AKI detection. Our de-
tection sensitivity increased by >1.5-fold with the alert trigger 
threshold set at a predicted AKI risk of >8%. As a screening 
tool, our alert limits could be set such that our sensitivity would 
be greater; however, balancing the potential for alert fatigue is 
important in determining the acceptance and, ultimately, the 
success of a working surveillance system.24 

A patient’s overall risk of AKI is influenced by many factors 
such as the presence of underlying chronic comorbidities and 
the nature or severity of the acute illness as this may affect the 
patient’s intravascular volume status, systemic blood pressures, 
or drug metabolism. Our study is limited as we are a children’s 

hospital and our patients may have fewer comorbidities than 
seen in the adult population. One could argue that this per-
mits a perspective not clouded by the confounders of chronic 
disease and allows for the effect of the medications prescribed 
to be more apparent. However, our study includes critically ill 
patients and patients who may have been hemodynamically 
unstable. This may explain why the NINJA algorithm did not 
improve the sensitivity of our AKI detection as the NINJA col-
laborative excludes critically ill patients. 

Dose and dosing frequency of the prescribed medications 
could not be taken into account, which could explain the finding 
that nonsteroidal anti-inflammatory drugs (NSAIDs) such as as-
pirin, ibuprofen, or ketorolac when used alone were associated 
with a low (<1%) rate of AKI despite being frequently prescribed. 
Additionally, as many providers are aware of the AKI risk of 
NSAIDs, these medications may have been used intermittently 
(as needed) or in select, perhaps healthier, patients or in patients 
that take these medications chronically who were admitted for 
reasons that did not alter their outpatient medication regimen. 

Our study also reflects the prescribing habits of our insti-
tution and may not be directly applicable to nontertiary care 
hospitals or centers that do not have large cystic fibrosis, bone 
marrow, or solid organ transplant populations. Despite our 
study’s limitations, we feel that there are several findings that 
are relevant across centers and populations. Our data were de-
rived from the systematic ordering of daily serum creatinines 
when a patient is at risk for nephrotoxin-related AKI. This is in 
step with the philosophy advocated by others that AKI iden-
tification can only occur if the providers are aware of this risk 
and are vigilant.25 In this vigilance, we also recognize that not 
all risks are of the same magnitude and may not deserve the 
same attention when resources are limited. Our identification 
of those medication combinations most associated with AKI 
at our institution has helped us narrow our focus and identi-
fy specific areas of potential education and intervention. The 
specific combinations identified may also be relevant to sim-
ilar institutions serving similarly complex patients. Those with 
dissimilar populations could use this methodology to identify 
those medication combinations most relevant for their patient 
population and their prescriber’s habits. More studies of this 
type would be beneficial to the medical community as a whole 
as certain medication combinations may be found to be high 
risk regardless of the institution and the age or demographics 
of the populations they serve.
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