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Pathogenesis of epilepsy:
the role of excitatory amino acids

GREGORY L. HOLMES, MD

The clinical and electroencephalographic fea-

tures of seizures in children differ considerably from those in
adults. Recently there has been an increased interest in the
biological basis for the unique clinical and electroencepha-
lographic features of childhood epilepsy. It is now clear that
studies in adult animals can not be extrapolated to the imma-
ture animal.

Excitatory amino acids bind to several types of re-

ceptors in synapses in the brain. Overexcitation of these re-
ceptors causes seizures in experimental animals, and
experimental agents can block these receptors. However, we
will have to be cautious about developing these agents as an-
tiepileptic drugs, since excitatory amino acids and their re-

ceptors are involved in brain plasticity and learning in
children.
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HE CLINICAL and elec-

troencephalographic fea-

tures of seizures in chil-

dren differ considerably
from those in adults. Disorders such
as infantile spasms, Lennox-Gastaut
syndrome, and Landau-Kleffner syn-
drome occur only in childhood and
frequently are treated with drugs
rarely used in adults. The biological
basis for the unique clinical charac-
teristics and prognosis of childhood
epilepsy is poorly understood. Inves-
tigators are now using a variety of
animal models to study the differ-
ences in epileptogenesis between
the immature and the mature brain.
[t is now clear that studies in adult
animals cannot be extrapolated to
the immature animal.

An in-depth discussion of the de-
velopmental aspects of epilepto-
genesis would be beyond the scope of
this paper. The reader is referred to a
recent review by Moshé and Corn-
blath' for a detailed discussion of this
topic. Rather, because of the im-
mense interest in the relationship
between excitatory amino acids
(EAAs) and epilepsy (and in experi-
mental drugs that block the action of
EAAs), we will review the recent
advances of the role of EAAs in epi-
leptogenesis in the developing brain.
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WHAT EAAs DO

EAAs, principally L-glu-
tamate, act as neurotransmit-
ters at numerous synapses in
the brain in cortical path-
ways involved in sensation
and motor function.”’ EAAs
complement the inhibitory
neurotransmitter gamma-
aminobutyric acid. Axon ter-
minals containing EAAs
connect predominantly to
spines of the dendritic
branches, while axon termi-
nals containing gamma-ami-
nobutyric acid connect to
the neuronal cell body and
proximal axon. The balance
between excitatory and in-
hibitory neurotransmitters
determines whether individ-
ual neurons will depolarize.

Glutamate and related
EAAs are released from
presynaptic neuronal ter-
minals in a calcium-de-
pendent process when the
presynaptic neuron depo-
larizes. Once released into
the synaptic cleft, gluta-
mate can depolarize the
postsynaptic ~ neuronal
membrane by binding to
one or more of the EAA re-
ceptors (Figure 1). Presy-
naptic reuptake mecha-
nisms remove amino acids
from the synaptic cleft.

EAAs are widely distributed in both developing
and mature brains and are distinguishable by their
biochemical, electrophysiologic, and pharmacologic
criteria.””> The functional diversity of EAAs is re-
flected by the presence of two distinct groups of
glutamate receptors: ionotropic and metabotropic.
The ionotropic receptors contain integral cation-
specific ion channels and are further divided into the
following major groups: N-methyl-D-aspartate
(NMDA) receptors, amino-3-hydroxy-5-methyl-4-
isoxazol propionic acid (AMPA) receptors, and
kainic acid receptors. The functionally and pharma-

JULY ¢ AUGUST 1995

NMDA
or glutamate

AMPA,
KA, or glutamate

Na*

glutamate

Nat

Glumate

FIGURE 1. Types of glutamate receptors. The three ionotropic receptors (NMDA [N-
methyl-D-aspartate], AMPA [amino-3-hydroxy-5-methyl-4-isoxazol propionic acid], and
KA [kainic acid] receptors) and two metabotropic receptors (L-AP4 [L-2-amino-4-phos-
phonopropinonic acid] and ACPD [aminocyclopentyl dicarboxylic acid]) are shown. Gluta-
mate binding occurs at all of the receptor types. The NMDA receptor binds to NMDA or
glutamate, the AMPA receptor binds to AMPA, KA, or glutamate, and the KA receptor
binds to KA and glutamate. The NMDA receptor also has binding sites for glycine. In addi-
tion, the channel is blocked by magnesium (Mg2+) and PCP (phencyclidine). Upon opening
of the ionotropic channels, sodium and calcium ions enter the cell. The metabotropic recep-
tors are coupled via G proteins to intracellular enzymes, phospholipase C (PLC) for the
ACPD receptor, and phosphodiesterase (PDE) for the L-AP4 receptor. PLC catalyzes the
production of inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) from phospha-
tidylinositol 4,5-bisphosphate (PIP;).

cologically distinct metabotropic glutamate recep-
tors are coupled to G protein.””!' Both the ionot-
ropic®'? and metabotropic" receptors have been re-
ported to play a role in epilepsy.

The AMPA-receptor channel normally plays an
important role in transmitting fast, excitatory post-
synaptic potentials and transmits much of the exci-
tatory activity in the brain. However, the NMDA
channel has voltage-dependent properties. The
amount of current passed by the NMDA channel is
reduced when the cell membrane is hyperpolarized
beyond =35 mV, and is quite small at the resting
potential of the cell, approximately =70 mV.'*"
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FIGURE 2. NMDA receptor. Glycine acts as a coagonist. There are several modulatory
sites that alter the degree of channel opening and subsequent sodium (Na*) and calcium
(Ca”") influx. These modulatory sites include the channel, where magnesium or drugs such
as phencyclidine bind. There are also pH, polyamine, zinc, and redox sites where modifica-
tion of channel properties can occur. The redox site consists of one or more thiol (sulfhy-
dryl [SH]) groups, which may react with an oxidized congener of nitric oxide.

The NMDA recognition site is coupled to a cat-
ion channel permeable to both calcium and sodium
ions. A glycine modulatory site is closely associated
with the NMDA receptor; glycine is required for
channel activation, and enhances NMDA re-
sponses. Magnesium ions block the channel in a
voltage-dependent manner.'*’” NMDA -receptor-
channel activation requires both NMDA and gly-
cine receptor activation and concomitant mem-
brane depolarization. The excitatory postsynaptic
potentials mediated by AMPA receptors need to
reach a threshold of activity before the NMDA
channel can open. This suggests that the NMDA-
receptor-channel complex is ordinarily reserved for
“special” activities, including long-term potentia-
tion following repetitive electrical stimulation, ac-
tivity-dependent neuronal plasticity, encoding of
memories, and epileptogenesis following chemical
or electrical stimulation.

NMDA and non-NMDA receptors are often
found at the same synapse.” Where both receptors
are found, the synaptic potential has two compo-
nents: fast (via non-NMDA receptors) and slow (via
NMDA receptors).'*'®* The NMDA component of
the response has a slow rise time and a prolonged
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effect that can last 500
msec.’®® After the initial
activation, the prolonged
effect can be shortened by
magnesium, which blocks
the ion flow through the
NMDA channels. How-
ever, aminophosphono-
valerate (a glutamate
blocker) cannot block the
prolonged effect.”® Daw et
al’ conclude that glutamate
activation of NMDA chan-
nels results in prolonged ef-
fects, and that NMDA and
its antagonists tend to af-
fect processes that have a
low frequency.

Studies suggest that the
physiologic activity of the
NMDA -receptor-channel
complex is enhanced in
the developing brain as
compared with the adult
brain. The NMDA -recep-
tor complex appears to be
involved in activity-dependent plasticity.

ROLE OF EAAs IN EPILEPSY

Each of the receptor subtypes moderates normal
physiologic excitatory responses, but under condi-
tions of extreme receptor activation, agonists for
these receptors are capable of initiating a cascade of
events resulting in neuronal death in both adult*'*
and immature***? brains. Investigators have sug-
gested that prolonged seizures cause damage by re-
leasing an “endogenous excitotoxin,” presumably an
EAA, in concentrations that cause irreversible
brain damage.?"**%

EEA blockers as antiepileptic drugs

For this reason, many investigators have exam-
ined the role of EAA-receptor antagonists in epi-
lepsy. The NMDA receptor complex can be
blocked pharmacologically in at least three ways:
competitive NMDA antagonists such as CPP (3-[2-
carboxypiperazin-4-yl] propyl-1-phosphoric acid)
compete for binding at the NMDA -recognition

site; competitive glycine receptor antagonists such
as HA-966 (3-amino-1-hydroxypyrrolid-2-one)
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block the glycine site and reduce NMDA -mediated
responses; and noncompetitive NMDA -receptor
antagonists such as MK-801 and dissociative anes-
thetics bind within the ionophore to the phency-
clidine (PCP) receptor and prevent ion fluxes (Fig-
ure 2).>* MK-801 has probably received the most
attention.”>® Stafstrom and colleagues’” found that
MK-801 pretreatment reduces kainic acid-induced
spontaneous seizures in prepubescent rats. MK-801
has also been found to inhibit kindling in develop-
ing rats.*®

Considerable data now demonstrate that kainic
acid receptors and NMDA receptors are present at
birth but increase dramatically during the first few
weeks of life. Miller and colleagues® studied the
ontogeny of kainic acid-binding sites in rat fore-
brain using in vitro receptor autoradiography. Spe-
cific binding was detectable in the hippocampus by
1 day of age. In the CA3 region, binding increased
progressively with age, peaking at 21 days of age.
Insel et al® also found that specific binding to
NMDA and quisqualic acid receptors could be de-
tected at 1 day of age in the hippocampus and
striatum, with the adult pattern of binding to
NMDA receptors emerging by 14 days of age with
high densities of binding in the CA1 region and the
dentate gyrus.

There is also increasing evidence that EAAs may
have age-related effects.*?*¥"®## However, the
long-term adverse effects of EAAs are highly de-
pendent on the receptor stimulated. For example,
although kainic acid administered to immature ani-
mals causes severe seizures and is associated with a
high mortality rate, surviving animals have fewer
pathologic and behavioral abnormalities than do
mature animals receiving the drug.#* Other EAAs
appear to have greater neurotoxicity in the imma-
ture brain than in the mature brain.**?%#47 McDon-
ald and colleagues* found that injection of NMDA
into the corpus striatum caused more neurotoxicity
in 7-day-old rats than in adults. NMDA toxicity in
vivo transiently peaks near 7 days of age in rats; the
severity of the brain injury resulting from direct
intrastriatal infusion of equimolar NMDA was ap-
proximately 60 times greater at this age than in
adults. The severity of brain injury produced by infu-
sion of NMDA at age 1, 14, 21, and 28 days was
comparable to that in adults; intermediate levels of
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injury were present at 4 and 10 days of age and peak
levels are present at age 7 days.

Likewise, AMPA and quisqualic acid, when given
by a single injection, have greater toxicity in imma-
ture than in mature animals.”®*" Kainic acid-induced
status epilepticus results in long-term deficits in
learning, memory, and behavior and susceptibility to
seizures in mature rats but has no discernible effect
in rats 20 days old or younger.*#+#-!

In summary, each EAA-receptor subtype possess
a unique developmental neurotoxic profile. In adult
rats, kainic acid is more toxic than NMDA, which is
more toxic than quisqualic acid; in 7-day-old rats,
NMDA is more toxic than quisqualic acid, which is
more toxic than kainic acid.

The behavioral and electroencephalographic ef-
fects of EAAs also are age-dependent. Holmes and
colleagues**°%! found that kainic acid produced dif-
ferent patterns of electroencephalographic and be-
havioral seizures in 5- to 10-day-old rats compared
with older rats. Similarly, Thurber and colleagues™
found that the behavioral manifestations of seizures
produced by quisqualic acid vary as a function of age:
young rats demonstrated rigidity and immobility fol-
lowed by circling activity and intermittent forelimb
clonus, while 60-day-old animals had severe, wild
running followed by generalized clonic seizures.’
Neocortical electroencephalographic ictal dis-
charges occurred more prominently in the younger
animals; amygdala ictal discharges were more promi-
nent in the older animals.

These age-related differences may relate to differ-
ences in the number, distribution, density, or affinity
of the EAA receptors.”*6 Insel et al® found that
in 21-day-old rats, the number of quisqualic acid
receptors in the neocortex was 50% higher than in
adult neocortex, suggesting that the immature neo-
cortex could be especially vulnerable to quisqualic
acid-induced seizures. In immature rats, kainic acid
receptors in the CA3 region increase sharply during
the third week of life, whereas kainic acid receptors
in the inner layers of neocortex are transiently over-
expressed at this age and thereafter gradually decline
to adult levels.”*’’

When we evaluate the effects of EAAs on the
developing brain, it is therefore critical that we
closely examine the dosage and method of admini-
stration. McDonald et al* gave microinjections of a
fixed dose of AMPA into the striatum of rats and
found that the resulting brain injury was most severe
between the ages of 5 and 28 days; the peak sensitiv-
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ity occurred near the age of 10 days. Injection of
quisqualic acid produced a developmental pattern of
striatal susceptibility similar to that of AMPA, al-
though quisqualic acid was a considerably less potent
neurotoxin. However, when Holmes et al*® adminis-

tered quisqualic acid through an intraventricular
catheter over a period of 1 week, brain damage was
no greater in immature than in mature animals.

“Plasticity”
nervous system to changes in the internal or exter-
nal milieu.”® The term is usually limited to adaptive
adjustments, ie, adjustments that tend to return the
system to its former state or enable the system to
function and the organism to survive under the
changed conditions.®

There is a general consensus that brain plasticity
is greater in children than in adults; ie, the imma-
ture brain has a greater opportunity to adjust to
environmental changes than does the mature
brain.*"2 Numerous examples of this phenomenon
exist in the clinical and experimental literature.
Lassonde and colleagues,®* in a series of studies of
children and adults who either had congenital ab-
sence of the corpus callosum (callosal agenesis) or
underwent surgical section of the callosum, found
that the age at which the lesion occurred deter-
mined whether the disconnection syndrome would
develop. Two children who underwent callosotomy
in childhood performed as well as their normal
peers, while the three others who had the operation
in late adolescence or in adulthood showed typical
disconnection deficits. The patients with callosal
agenesis outperformed all groups. The authors
speculated that the remarkable plasticity seen in
patients with callosal agenesis or early callosotomy
was related to a critical period in development co-
inciding with a phase of synaptic overproduction
and redundancy that would favor the reinforce-
ment of alternative neural pathways. The compen-
satory mechanisms appeared to become more lim-
ited in late adolescence, when synaptic distribution
presumably assumed adult patterns.®

Children who develop hemiplegia during the first
few years of life usually still learn to talk, even if the
lesion involves the dominant hemisphere. In addi-
tion, children with hemiplegia that develops early
can “reorganize” their central motor pathways.
Farmer et al* found that children with hemiplegic
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cerebral palsy had a common synaptic input to both
hands from abnormally branched presynaptic axons.
Furthermore, results of electromagnetic brain stimu-
lation, cutaneomuscular testing, and tendon-reflex
testing suggested that these common inputs were
provided by abnormally branched corticospinal-tract
fibers originating in the undamaged motor cortex.

The brain is most plastic when it is developing.®!
In humans, synaptogenesis in the cerebral cortex
takes place before birth and during early infancy.
The maximum synaptic density, absolute number of
synapses, and number of synapses per neuron are
reached by 1 year of age. Subsequently, synapses are
progressively eliminated, most rapidly during the
preschool years.® Huttenlocher®>® speculates that
this overproduction of synapses imparts plasticity to
the brain of young children.

Although greatest in the immature brain, plastic-
ity can occur throughout life. For example, experi-
mental models of temporal lobe epilepsy have dem-
onstrated growth of mossy fibers in the hippocampus
following prolonged or recurrent seizures.*

Maximum brain growth ends by age 5 years; there-
after, patients with lesions in the central nervous
system are less likely to recover. Children with stra-
bismus provide an important example of this princi-
ple.® Strabismic amblyopia, if detected early, is in-
variably treatable. Children younger than 6 years
have normal vision; adults with strabismus invariably
develop uncorrectable monocular visual loss.®

Role of EAAs in brain plasticity and learning

Besides being neurotransmitters, EAAs in the de-
veloping brain are involved in plasticity and excito-
toxicity.”” As noted above, EAA receptors, particu-
larly NMDA and quisqualic acid receptors, are
transiently more numerous early in life. This tran-
sient increase is presumably beneficial to the imma-
ture brain because physiological activation of the
EAA system plays a critical role in plasticity of early
learning and morphogenesis.

Considerable data demonstrate that EAAs par-
ticipate in synaptic plasticity of the central nervous
system.>”"” Much of this evidence is based on the
role of NMDA receptors on long-term potentiation
at the hippocampal level, and of quisqualic acid
receptors and kainic acid receptors in the expression
of long-term potentiation. This suggests that EAA
systems may have an important role in learning and
memory. This was illustrated in a study by Brooks et
al,’* who found that administration of NMDA to

VOLUME 62 « NUMBER 4



EPILEPSY B HOLMES

immature rats (17 and 35 days old) resulted in an
increase in synaptic density and number within
hours of injection.

Rauschecker et al” administered 2-amino-5-phos-
phono-valerate (APV, a competitive NMDA an-
tagonist), and MK-801 (a noncompetitive NMDA
antagonist) intracortically by means of implanted
osmotic pumps in kittens; which were monocularly
deprived for 1 to 2 weeks. The expected ocular domi-
nance shift was prevented or reduced within a radius
of 4 to 5 mm of the pump tip in the visual cortex.
The authors concluded that NMDA antagonists in-
terfere with cortical plasticity, although the mode of
action remains ambiguous.

Gamma-L-glutamyl-L-aspartate (a pseudopep-
tide) selectively blocks clonic-tonic seizures induced
by NMDA but has no significant action against sei-
zures induced by kainic acid or quisqualic acid. On
the basis of these findings and on biochemical stud-
ies, we can conclude that this drug is a competitive
antagonist at NMDA receptors. When Ungerer et
al™ administered this drug to mice immediately after
the mice learned a Y-maze avoidance task, it specifi-
cally blocked the spontaneous improvement in per-
formance observed in control animals between the
1st and 24¢h hour after training, but had no effect on
learning or retrieval processes or on short-term mem-
ory. Moreover, the drug had no effect on spatial rec-
ognition memory in an alternation task in which
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control animals did not exhibit any improvement in
performance after training. Ungerer and colleagues™
also found that the NMDA -receptor antagonist CPP
had a similar effect.

Some evidence exists that drugs that affect the
glycine site of the NMDA receptor complex may
have less effect on learning than those that act at
the ion channel. Chiamulera et al” found that in-
tracerebroventricular administration of DL-2-
amino-5-phosphonovaleroate (DL-AP7), CPP, and
MK-801 resulted in impaired learning performance
in a passive avoidance task in mice. However, the
glycine antagonists kynurenic acid and 7-chloro-
kynurenic acid at high doses significantly failed to
affect performance in the same model of learning.

This concern about the possible adverse effects of
MK-801 and other NMDA-receptor antagonists
have raised concern about their development as an-
tiepileptic drugs.

EAAs appear to have a major role in both the
development and the propagation of seizures. How-
ever, since EAAs have an important role in learning
and brain plasticity, it is important that future inves-
tigators study not only the antiepileptic and neuro-
protective properties of EAA antagonists, but also
their effects on learning, memory, and behavior.
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To recognize the proper indications for
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apply the echo information to optimum patient care.
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