
Computers in Family Practice
Editor: Roger A. Rosenblatt, MD, MPH

BASIC or Pascal:
Which Is the Language for the Generalist?

Peter Mullins, MSc
Auckland, New Zealand

Mr. Mullins is a biostatistician and software au
thor at the University o f Auckland Medical School
in New Zealand. Microcomputers are in wide use
in the medical school environment in both New
Zealand and Australia, and this paper addresses
the important question o f which computer lan
guage is most suitable for the physician interested
in mastering the microcomputer.

Mr. Mullins and his colleagues have developed
an elegant statistical package for the APPLE and
IBM microcomputers that is particularly suited to
rapid and painless analysis o f small data sets.

Roger A. Rosenblatt—Editor

The past eight years have seen the rapid evolu
tion of new computers, new computer languages,
and a multitude of new computer applications. The
notion of a personal computer first arose about
1975: the computer as a general-purpose tool
for the nonspecialist. This article deals with the
choice of a programming language for the general
ist with little experience with computers.

One of the great generalists of the last century
was Sir Richard Burton, the explorer, poet, and
linguist, who at his peak had some 35 languages
at his command and who claimed to be able to
absorb most of the grammar of a new language
within three months. What would he have made of
BASIC or Pascal? The number of languages avail
able to the microcomputer user is enormous and
might even have challenged the abilities of a lin
guist of the caliber of Burton. This discussion will
be confined to BASIC and Pascal, probably the

From the Department of Community Health, Auckland
School of Medicine, Auckland, New Zealand. Requests for
reprints should be addressed to Mr. Peter Mullins, Depart
ment of Community Health, Auckland School of Medicine,
Private Bag, Auckland, New Zealand.

two most popular computer languages and the two
most suitable for the beginner.

To determine which of these languages is the
language of choice, one must first consider the
needs of the generalist. Most physicians use a
microcomputer for financial management, some
word processing, data management, and entertain
ment. Most of these needs, of course, are best met
by the purchase of off-the-shelf software pack
ages, and the language in which the package is
written is largely irrelevant. If this were to be the
limit of involvement and interest, there would be
no need to learn any computer language.

For those who wish to use the microcomputer
as more than a fixed-purpose tool, however, it is
desirable to be conversant with at least one of the
major programming languages. BASIC and Pascal
have emerged as the leading contenders for versa
tile and freely available general-purpose languages
suitable for beginners. There are major differences
between them, however, and fluency in one is of
little specific use in the other. Since learning a
computer language is akin to learning a human
language, such as German or French, the novice
should make a considered decision in his or her
selection. Both BASIC and Pascal allow the com
puter user to design and implement programs for a
wide variety of tasks, and both can be used on
virtually all microcomputers.

Since the advent of the personal computer, the
language BASIC (Beginners’ All-purpose Symbolic
Instruction Code) has become almost ubiquitous—
rare indeed is the computer that is not equipped
with a version of BASIC. In the case of microcom
puters, this language system is provided “ free”
with the machine, perhaps one of the reasons for
its ubiquity! In fact, BASIC may now quite rea
sonably lay claim to the property of being the most
widespread computer language in the world.

® 1984 Appleton-Century-Crofts

THE JOURNAL OF FAMILY PRACTICE, VOL. 19, NO. 3: 393-395, 1984 393

BASIC OB PASCAL

On the other hand, BASIC may also fairly be
described as the most criticized computer lan
guage in the world. Reviled the world over by
departments of computer science in universities,
it is nevertheless still widely used in the produc
tion of commercial and scientific software and is
widely taught, mainly because it is extraordinarily
easy to learn, consisting of a small set of possible
commands that are very “ English-like” and have
a very simple grammar.

A second fundamental feature that has made
BASIC addictively easy to use is its interpretive
mode of use: BASIC throws the programmer’s
mistakes back at him immediately rather than pro
ducing error messages within a printout for later
perusal. This quality makes it very easy to write
and test small programs quickly: debugging small
BASIC programs can be astonishingly quick.
When a BASIC program runs in the computer,
what is actually executed is segments of machine
code, but the conversion to machine code takes
place line by line. There are two major side effects
of this interpretive mode: routines run quite
slowly, and some of the address space of the com
puter is occupied by code that is never used. This
space is at a premium in a small machine, so that
data sets are unnecessarily limited in size.

Instructions in BASIC code are written as a
simple sequence of instruction lines. Each line
must be numbered, and instructions will be carried
out in the order of the numbering, not the order in
which the instructions were entered. Execution of
the program can depart from this linear sequence
as a result of a decision or iterative process,
by reference to these line numbers in one or
other of the available control statements. The
three types of control statement in BASIC
are an unconditional branching statement, the
GOTO statement; a conditional branching state
ment, the IF . . . THEN statement (some BASICs
allow IF . . . THEN . . . ELSE statements); and
the FOR . . . NEXT loop, for iterative execution
of program segments. These statements are suffi
cient to give the programmer great power in
manipulating data, but they also offer enormous
opportunities for the creation of confusing and
confused code. This lack of structure is probably
BASIC’s greatest drawback.

BASIC’s main rival, in numerical and philo
sophical terms, is Pascal, named by its creator,
Niklaus Wirth, for the 18th-century mathematician
and philosopher Blaise Pascal. It is a rival in nu
merical terms in that almost every personal com

puter on the market today is equipped, or can be
equipped, with a Pascal compiler. Here, in fact is
the greatest difference between the two languages'
BASIC is interpreted, while Pascal is designed
to be implemented as a compiled language. A pro
grammer using Pascal works roughly as follows:

1. Write the program, using the syntax and
grammar specified by the Pascal language.

2. Compile the Pascal program. This step ac
tually entails turning the Pascal statements into
machine language instructions, which is done with
a special program called a compiler. The result of
compiling a program is a new program, often
called the “object file,” consisting of the equiva
lent machine language code.

3. Link the resulting “ object file” to any sys
tem programs it may use. (This step is automatic
on many Pascal systems, but it nevertheless hap
pens as part of the process and takes time.)

4. Run the program. This step is then followed
by the “debugging process,” which of course in
volves rewriting the text file, recompiling, and
linking, and so on.

This process can be very tedious, particularly
with large programs on small machines, since most
of this processing is disk based, and the disk drive
is the slowest part of a microcomputer system.
Among others, these are reasons why so many
people prefer to program in BASIC. On the other
hand, the code resulting from a compiler runs
much faster, sometimes on the order of ten times
as fast as the comparable BASIC code.

The other great advantage of using Pascal as a
programming language is its obvious structure:
a well-written Pascal program can usually be
understood by novices with very little difficulty.
This structure arises from a reductionist approach
to the programming problem: the overall task
(process a file of data, for example) has been
broken down, or reduced, to a number of concep
tually easier tasks, such as “ get the next record,”
“ add these results,” etc. The structural approach
is also useful in writing BASIC programs, but the
effect is not so obvious in the final result.

Figure 1 illustrates the differences between the
two languages by showing the same program
written in BASIC and in Pascal. The program is a
trivially simple one; directing the computer to add
together two numbers and print the result. The
differences in style between the two programs are
obvious and should give some appreciation of the
flavor of programming in each of the languages.

The major distinction between the two lan-

394 THE JOURNAL OF FAMILY PRACTICE, VOL. 19, NO. 3, 1984

BASIC OB PASCAL

BASIC Pascal

10 GOSUB 1000 PROGRAM ADDITION;
20 GOSUB 2000 VAR A,B,C: REAL;
30 END
1000 A= 1 PROCEDURE ADD;
1010 B = 2 BEGIN
1020 C=A+B A :=1;
1030 RETURN B : = 2;
2000 PRINT A” + "B " = "C C : = A + B
2010 RETURN END;

PROCEDURE PRINTRESULT;
BEGIN

WRITELN(A, ' + ',B,' = ',C)
END;

BEGIN
ADD;
PRINTRESULT

END.

Figure 1. Calculating the sum of two numbers, comparing BASIC and
Pascal

guages is evident even from this oversimplified
example. BASIC is a sequential language. The
flow of the program is determined by the line
numbers that precede each instruction. Although
subroutines are frequently invoked in BASIC
programs—indicated by the command GOSUB in
this example—they are embedded in the larger
program and can be difficult to find and to follow.
On the other hand, BASIC is quick and parsimo
nious; it is possible to accomplish complex tasks
with simple and sparse language.

Pascal, by contrast, is a verbose language. This
verbosity may require more effort both to learn
and to write, but the resulting program instruc
tions tend to be self-explanatory or, in the jargon
of the trade, self-documenting. As can be seen
from this example, each component of the Pascal
program is broken down into a self-contained pro
cedure, and the program works by invoking these
procedures. It is very easy to build up a complex
program by assembling the building blocks to
gether into a coherent whole, and such programs
are easily expanded, modified, or moved from one
microcomputer environment to the next.

For these reasons, Pascal offers many advan
tages as a systems development language because
of its portability, its procedural structure, and its
consequent ease of maintenance. In fact, the
Apple Lisa uses Pascal as its system language.
To be most effective, Pascal needs large memory,

THE JOURNAL OF FAMILY PRACTICE, VOL. 19, NO. 3, 1984

good file handling, and a sophisticated operating
system. Most manufacturers now offer a version
of Pascal on their machines, but BASIC is still the
usual built-in offering.

Another advantage of Pascal as a programming
language is that it is currently at the peak of its
popularity. It is not likely to disappear over the
next few years, particularly since so many com
puter science departments see it as the language of
choice for teaching programming skills, but it may
wane a little in popularity as more and more mem
ory becomes available on microcomputer systems,
and even more sophisticated languages become
popular.

In conclusion, then, BASIC is far easier to learn
and easier to use than Pascal, while Pascal gives
code that executes much faster, that is self-
documenting, and that is easier to read and main
tain than BASIC. The language of choice depends
largely on the type of use envisaged: the pro
grammer who wants to develop software systems
that are to be robust and last perhaps for years
with some regular maintenance will find better
service from the elegance and speed of Pascal. The
programmer who is going to write many small pro
grams for private use only will probably prefer the
ease of developing BASIC programs. Mastering
either language will enhance the generalist’s under
standing of computers and computing and expand
the versatility and utility of the home computer.

395

