Needle phobia is a recently defined medical condition that affects at least 10% of the population. Because persons with needle phobia typically avoid medical care, this condition is a significant impediment in the health care system. The etiology of needle phobia lies in an inherited vasovagal reflex of shock, triggered by needle puncture. Those who inherit this reflex often learn to fear needles through successive needle exposure. Needle phobia is therefore both inherited and learned.

In a family practice, needle phobia can be managed by reassurance and education, avoidance of needles, postural and muscle tension techniques, benzodiazepines, nitrous oxide gas, and topical anesthesia applied by iontophoresis.

Needle phobia is a condition that has become an increasingly important issue in medicine because of the modern reliance on injections and blood testing. Contrary to popular belief, needle phobia is not confined to children, is not an emotion-driven or transient phenomenon, and is not a rare condition. Clinicians need to be aware of needle phobia because it is a common condition and because needle-phobic persons tend to avoid medical treatment, which can lead to serious health problems as well as social and legal problems.

Needle phobia has been defined as a formal medical condition1,2 and has recently been included in the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) within the diagnostic category of Blood-Injection-Injury Phobia.3 A review of the background medical literature and suggestions for management of needle phobia are presented here.

The etiology of needle phobia is rooted in an inherited vasovagal reflex that causes shock with needle puncture. With repeated needle exposure, those with an inherited vasovagal shock reflex tend to develop a fear of needles. Unlike most other phobias, in which exposure to the feared object excites tachycardia, victims of needle phobia typically experience a temporary anticipatory tachycardia and hypertension, which on needle insertion turns into bradycardia and hypotension (Figure), accompanied by pallor, diaphoresis, tinnitus, syncope or near-syncope, and sometimes asystole or death.1

According to the DSM-IV, a phobia is defined by the presence of fear and by avoidance behavior.3 The symptom of avoidance of needles, doctors, dentists, etc, is central to the definition of needle phobia, since avoidance of health care is surely a health care problem. However, because needle phobia is also accompanied by numerous physiological changes in blood pressure, pulse, electrocardiogram (ECG) waveforms, and stress hormone levels,1,2 these measurements can also be used to define this condition (Table 1). While a dislike or mild fear of needles is very common, needle phobia can be more rigorously defined by objective clinical findings in addition to subjective symptoms.

Needle Phobia in Family Practice

Those with needle phobia are often terrified of routine needle procedures, and a few are so frightened that they would rather die than have a needle procedure.4 Even such relatively minor needle procedures as venipuncture1,5 or subcutaneous injection6 can cause a vasovagal
Needle Phobia

HYPOTENSION BRADYCARDIA

TIME

Figure. Theoretical biphasic expression of the vasovagal reflex in needle phobia.

shock reflex and evoke patient resistance. When those with needle phobia do agree to needle procedures, they often experience syncope, fall and sustain trauma, have convulsions, lose bowel and bladder control, evoke the calling of cardiac codes, or otherwise cause great concern among staff and family members. Others with needle phobia are simply noncompliant with medical treatment regimens, eg, insulin self-injections.

Victims of needle phobia possess a heightened risk of morbidity and mortality simply because they avoid health care, sometimes for many years, and even when the need for treatment is compelling. Approximately 5% to 15% of the population, for example, decline necessary dental treatment, primarily because they fear oral injections. With an incidence of needle phobia of at least 10%, it is reasonable to hypothesize that a large hidden population goes without regular health care because of this condition. The recognition, acceptance, and communication of this danger by both the medical community and the public, and the development of methods to compensate for needle fear in clinical practice, represent probably the greatest challenges that this condition poses for family medicine.

Needle phobia also can cause major social and legal difficulties in one’s life. A fear of blood testing or immunization can interfere with or even destroy plans for marriage, travel, education, immigration, or employment. Students may be discouraged from biological, nursing, or medical careers because of their fear of needles, and women wishing to have children may be thwarted by needle fear. Legal problems can arise when blood tests are ordered by a court in paternity cases, and some victims of needle phobia have even been charged by the police for failure to agree to blood testing. The best-selling book The Blooding detailed the resistance that authorities in England experienced against mass blood testing to eliminate suspects in a murder case. In the United States, involuntary blood testing of accused drunk drivers has led to four cases being appealed to the US Supreme Court.

Occasionally, needle phobia can be fatal. At least 23 reported deaths can reasonably be ascribed solely to needle phobia and its vasovagal reflex during needle procedures such as venipuncture, blood donation, arterial puncture, pleural tap, and intramuscular and subcutaneous injections. Other reports and indirect evidence further suggest that needle procedures can result in sudden death. A death by needle phobia can be due to either or both of two mechanisms: an abrupt vasovagal drop in blood pressure and perfusion, especially in an arterial tree already compromised by atherosclerotic

Table 1. The Primary Factors Underlying the Recognition and Diagnosis of Needle Phobia

<table>
<thead>
<tr>
<th>Past medical history*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Self-report by the patient of a long-term needle fear, usually from childhood, that the patient recognizes as unreasonable.</td>
</tr>
<tr>
<td>(2) Exposure to or anticipation of a needle procedure invariably triggers immediate anxiety, sometimes in the form of a panic attack. In children, the anxiety may be expressed by crying, psychomotor agitation, freezing, or clinging.</td>
</tr>
<tr>
<td>(3) Needle procedures, often along with associated medical objects or situations, are avoided either some or all of the time.</td>
</tr>
<tr>
<td>(4) The needle avoidance and fear interfere significantly with health care or with normal occupational, academic, or social activities, or the patient is markedly distressed about having the fear.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family medical history</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximately 80% of patients with needle phobia report strong needle fear in a first-degree relative, ie, parent, child, or sibling.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Physical symptoms of syncope, near-syncope, light-headedness, or vertigo upon needle exposure, along with other autonomic symptoms, eg, pallor, diaphoresis, nausea.</td>
</tr>
<tr>
<td>(2) Cardiovascular depression with a drop in blood pressure or pulse or both; with or without an initial rise in blood pressure or pulse or both.</td>
</tr>
<tr>
<td>(3) Electrocardiogram anomalies of virtually any type.</td>
</tr>
<tr>
<td>(4) Rises in any combination of several stress hormones: antidiuretic hormone, human growth hormone, dopamine, catecholamines, corticosteroids, renin, endothelin, and β-endorphin.</td>
</tr>
</tbody>
</table>

Note: A diagnosis of needle phobia can be made by past medical history alone. In addition, however, victims of needle phobia typically have symptoms of decreased cerebral perfusion, cardiovascular changes, electrocardiogram changes, and hormonal rises.
could cause myocardial infarction25,29 or cerebral infarction; or a vasovagal reflex could impair the sinoatrial or atrioventricular node enough to cause ventricular fibrillation or asystole.27,30

Prevalence of Needle Phobia

Because needle phobia has only recently been defined, only indirect estimates of its prevalence can be inferred from the literature. One study of 449 Canadian women found that 21.2\% experienced mild to intense fear, and 4.9\% had a phobic level of fear of injections, blood, injury, doctors, dentists, and hospitals.51 Another study estimated that 9\% of the US population in the age bracket of 10 to 50 years old have an injection phobia, and 5.7\% have seen a physician about this phobia.52 Dread of a painful injection was present in 11\% of 100 English office patients.53 Through in-hospital interviews, 22\% of 184 teenagers found that several had a fear of blood drawing strong enough to make it hard for them to come to a public clinic for prenatal care.54 In random surveys, 23\% of 200 Swedes35 and 27\% of 177 US college students36 reported needle fear as the main reason for not donating blood.

The prevalence of needle phobia is probably lower in population samples from clinics or hospitals since those with needle phobia tend to select themselves out of such populations. Even in a general population sample, many people express denial of their needle fear. Therefore, most of the studies done so far probably underestimate the true prevalence of needle phobia. Although the percentage is currently unknown, an estimate of at least 10\% is credible.

Etiology of Needle Phobia

In the author’s experience with over 50 patients with needle phobia, and in all similar cases reported in the medical literature, those afflicted inevitably display symptoms of an autonomic vasovagal reflex whenever they undergo a needle procedure. The neurophysiology of the vasovagal reflex is grounded in both a vagal bradycardia and a vasodilatation from withdrawal of α-sympathetic arteriolar tone, which together cause hypotension.2,30 In addition, associated neurological circuits cause ECG anomalies and stress hormone release.30 Because most victims of the vasovagal reflex do not actually lose consciousness, the term “vasovagal reflex” is more accurate than “vasovagal syncope,” the term most often used in the older literature. Although the vasovagal reflex has classically been described as being biphasic, with an anticipatory rise in blood pressure and pulse before needle puncture and a sudden plunge in both after puncture1,4,27,37 (Figure), the author has observed that some patients with needle phobia do not have this initial cardiovascular rise.

Physical Symptoms of the Vasovagal Reflex

The vasovagal reflex in needle phobia may include virtually any type and combination of autonomic symptoms, eg, a clammy diaphoresis, pallor, nausea, respiratory disturbances, and various levels of unresponsiveness.1,4,30,37-40 Although the onset of the vasovagal reflex from the start of a needlestick is often immediate, ie, within 2 to 3 seconds, a prospective study of 84 blood donors who fainted found that 16.7\% experienced syncope from 5 to 30 minutes after phlebotomy.38 Another series of 64 blood donors who fainted found that 14\% fainted after leaving the phlebotomy site and returning to work, sometimes several hours later.39

Although most victims of needle phobia who faint are unconscious for only a few seconds, a survey of 298 vasovagal fainters found that several had a loss of consciousness for 10 to 30 minutes, and a few lost consciousness for 1 to 2 hours.40 Although blood pressure usually returns to normal within 2 hours, and most vasovagal victims feel well enough to resume normal activity within several hours, others have anxiety, malaise, and weakness for 1 to 2 days after a vasovagal attack.38,40

Convulsions during vasovagal fainting, which are much more frequent than commonly realized, are a general response of the central nervous system (CNS) to the cerebral hypoxia of vasovagal shock. Of 84 blood donors who fainted, 14.3\% had prominent tonic-clonic episodes, and another 27\% had tonic muscular rigidity.38 Furthermore, even having a finger pricked for blood typing can cause syncope with convulsive seizures.38

Electrocardiogram Changes

In several case reports, ECG changes during the vasovagal reflex among patients with needle phobia have included sinus arrhythmia, premature atrial contractions, premature junctional contractions, unifocal and multifocal premature ventricular contractions, bigeminy, first- and second-degree block, changes in P waves, ST waves, and T waves, sinus bradycardia, sinus tachycardia, ventricular tachycardia, ventricular fibrillation, and asystole.1,2,3,5,26-38,37 Presumably, these ECG changes are secondary to vagal influence on the sinoatrial and atrioventricular nodes, and perhaps also to the antagonism between the activated sympathetic and parasympathetic systems on the heart.27
Stress Hormone Changes

At least 11 stress hormones have been reported to elevate during needle stimulation. Increased cortisol and corticotropin (ACTH) levels secondary to venipuncture and needle phobia have been documented.\(^1\) In one study, cortisol levels rose above average in 7 of 15 subjects, with a positive correlation between cortisol level and the number of vasovagal symptoms.\(^4\) In my experience, corticotropin-releasing factor also can elevate during needle procedures, as can dopamine. In 25% of 28 subjects in 112 trials, human growth hormone levels rose in response to venous catheterization.\(^4\) In three needle-induced vasovagal subjects, β-endorphin levels were observed to rise,\(^2\) but sometimes they do not rise.\(^1\)

Similarly, epinephrine and norepinephrine levels do not always become elevated during episodes of needle phobia.\(^1\) They have been observed to decrease in eight subjects who fainted after venipuncture, presumably related to the withdrawal of sympathetic vascular tone.\(^4\) In another study, however, 21 young women dental patients had increased levels of epinephrine, but not norepinephrine, with a decrease in epinephrine after the procedure.\(^4\)

The findings of both of these studies are compatible with a biphasic cardiovascular response.

Needle Phobia: Inherited or Learned?

Clear evidence exists to support the hypothesis of a hereditary component to needle phobia. Both the vasovagal reflex and needle phobia strongly tend to run in families.\(^1\) The heritability of blood-injury phobia in twin studies, including fear of injections, wounds, blood, and pain, has been estimated to be 48%.\(^5\) Variations in PR, QRS, and QT intervals and heart rate have heritabilities of 30% to 60%,\(^5\) and the autonomic control of the cardiovascular system in general, based on twin comparisons, is probably genetically influenced.\(^5\) Therefore, the plunges in blood pressure and pulse and the ECG anomalies during a needle-phobic response are surely also genetically influenced. The release of stress hormones like cortisol, aldosterone, and angiotensin have been observed to decrease in eight subjects who fainted after venipuncture, presumably related to the withdrawal of sympathetic vascular tone.\(^4\) In another study, however, 21 young women dental patients had increased levels of epinephrine, but not norepinephrine, with a decrease in epinephrine after the procedure.\(^4\)

The heritability of blood-injury phobia in twin studies ranges from 30% to 60%,\(^5\) and the autonomic control of the cardiovascular system in general, based on twin comparisons, is probably genetically influenced.\(^5\) Therefore, the plunges in blood pressure and pulse and the ECG anomalies during a needle-phobic response are surely also genetically influenced. The release of stress hormones like cortisol, aldosterone, and angiotensin have been observed to decrease in eight subjects who fainted after venipuncture, presumably related to the withdrawal of sympathetic vascular tone.\(^4\) In another study, however, 21 young women dental patients had increased levels of epinephrine, but not norepinephrine, with a decrease in epinephrine after the procedure.\(^4\)

The heritability of blood-injury phobia in twin studies ranges from 30% to 60%,\(^5\) and the autonomic control of the cardiovascular system in general, based on twin comparisons, is probably genetically influenced.\(^5\) Therefore, the plunges in blood pressure and pulse and the ECG anomalies during a needle-phobic response are surely also genetically influenced. The release of stress hormones like cortisol, aldosterone, and angiotensin have been observed to decrease in eight subjects who fainted after venipuncture, presumably related to the withdrawal of sympathetic vascular tone.\(^4\) In another study, however, 21 young women dental patients had increased levels of epinephrine, but not norepinephrine, with a decrease in epinephrine after the procedure.\(^4\)

The heritability of blood-injury phobia in twin studies ranges from 30% to 60%,\(^5\) and the autonomic control of the cardiovascular system in general, based on twin comparisons, is probably genetically influenced.\(^5\) Therefore, the plunges in blood pressure and pulse and the ECG anomalies during a needle-phobic response are surely also genetically influenced. The release of stress hormones like cortisol, aldosterone, and angiotensin have been observed to decrease in eight subjects who fainted after venipuncture, presumably related to the withdrawal of sympathetic vascular tone.\(^4\) In another study, however, 21 young women dental patients had increased levels of epinephrine, but not norepinephrine, with a decrease in epinephrine after the procedure.\(^4\)

The heritability of blood-injury phobia in twin studies ranges from 30% to 60%,\(^5\) and the autonomic control of the cardiovascular system in general, based on twin comparisons, is probably genetically influenced.\(^5\) Therefore, the plunges in blood pressure and pulse and the ECG anomalies during a needle-phobic response are surely also genetically influenced. The release of stress hormones like cortisol, aldosterone, and angiotensin have been observed to decrease in eight subjects who fainted after venipuncture, presumably related to the withdrawal of sympathetic vascular tone.\(^4\) In another study, however, 21 young women dental patients had increased levels of epinephrine, but not norepinephrine, with a decrease in epinephrine after the procedure.\(^4\)
Table 2. Techniques of Managing Patients with Needle Phobia

- Reassurance: discussion about the normality and prevalence of needle fear.
- Education: explanation of the inherited, involuntary nature of needle phobia and the various methods available to counter this condition.
- Avoidance of unnecessary or excessive needle procedures limits the conditioning of a vasovagal-based fear response and facilitates patient compliance with medical treatment.
- Desensitization therapy requires a motivated patient, yet may decondition the autonomic symptoms and fear experienced by patients with mild needle phobia and can extinguish associated blood-injury fears.
- Nerve-gate blocking distracts the patient by stimulating the area of needle use.
- Elevation of lower extremities in recumbent position with applied muscle tension augments the central venous reservoir, increases stroke volume, and helps maintain cerebral perfusion.
- Rapid-acting benzodiazepines, eg, diazepam or lorazepam, have an onset of action within 5 to 15 minutes from ingestion. A relatively large dose (eg, 10 to 20 mg po of diazepam) may be necessary and can be combined with nitrous oxide.
- Topical anesthetics at the needle site, eg, ice, ethyl chloride spray, or topical anesthetics. Topical anesthetics penetrate the skin much faster and deeper when driven by iontophoresis.

Management of Patients with Needle Phobia

It is essential that family physicians be knowledgeable about how to manage needle fear if they are to adequately treat these patients (Table 2). Communicating empathy and respect for patients with needle phobia by assuring them that they are not “wimps” or “oddballs” helps them accept their condition without embarrassment. Most victims of needle phobia sincerely believe that their problem is all in their mind and that they would not be fearful if they were stronger or more mature. Many simply do not realize that there are many others with similar fears. Giving patients a name for this condition legitimizes it to them and gives them a tool they can use to buffer their interaction with the health care system. Reassurance and education, mainstays within the family doctor’s armamentarium, almost always help.

Alternative methods of drug delivery can sidestep the issue of needle fear by avoiding needles altogether. Nasal sprays that deliver vasopressin, calcitonin and insulin, sprays that immunize against influenza and dust-mite allergens, and an oral form of insulin are all now in investigative trials in the United States. Topical analgesic patches and opiate suppositories can be used in cases of severe pain, eg, metastatic cancer, which might otherwise be managed with intravenous drips. Many other medicines could obviously be administered without needles.

When needle use is necessary, any one of several methods or a combination of methods may be useful. Desensitization therapy by a psychiatrist or clinical psychologist is usually lengthy, expensive, and of variable efficacy.\(^1\)\(^-\)\(^6\)\(^-\)\(^8\) Nerve gate—blocking methods, eg, pinching or rubbing the area to distract the patient during a needle-stick, can be helpful. Shock and syncope are reduced among phobic patients by having them lie supine with legs elevated and tense their muscles during needle procedures to increase cerebral blood flow.\(^5\)\(^3\) Needle-phobic patients should also be routinely premedicated with oral, sublingual, or intranasal benzodiazepines,\(^2\) with NO\(_2\),\(^8\) or...
both. Sublingual atropine to block bradycardia also may be beneficial. Since a vasovagal reaction can injure or even kill a patient, having on hand an oxygen source and a "crash cart" for cardiac resuscitation is mandatory with any needle-phobic patient undergoing a needle procedure.

Topical anesthesia of the autonomic sensory neural reflex at its origin so that the reflex is not triggered. Ethyl chloride spray can temporarily anesthetize the skin, but this affects only the superficial skin layers and lasts for only a few seconds. The skin can also be anesthetized by an ice pack, although freezing is unpleasant and can damage tissue. In placebo-controlled studies, topical anesthetics containing a mixture of lidocaine and prilocaine have been shown to work well in pediatric patients, and topical mixtures of tetracaine, adrenalin, and cocaine (TAC ointment) or tetracaine, adrenalin, and lidocaine have been long used in emergency departments for surface anesthesia. To work on intact skin, however, all these mixtures must be applied for 1 to 2 hours and have a depth of anesthesia of only 2 to 3 mm.

The depth and effectiveness of topical anesthesia is greatly enhanced by the technique of iontophoresis (or ionphoresis). Iontophoresis involves soaking an absorbent pad with lidocaine and driving it through the skin with a tiny electrical current from a battery-powered unit. Because lidocaine is a positively charged molecule, the electrode pad's positive charge repels the lidocaine, propelling it through the skin by way of the sweat ducts. Using iontophoresis, an injection or venipuncture site can be completely anesthetized to a depth of 1 to 2 cm in less than 10 minutes.

The procedure of iontophoresis has been assigned insurance reimbursement codes, and an iontophoresis unit for use with needle phobic persons has been cleared by the Food and Drug Administration. This instrument has been demonstrated to be effective for venipuncture and joint injections and has applications, for example, in blood donor drives and pediatric immunization programs. The ease of use of iontophoresis raises the intriguing possibility of creating in the near future medical environments that are completely free of needle phobia.

Acknowledgments
The author wishes to thank Nancy R. Hamilton, RN, for her most gracious patience and support during the preparation of this paper, and also Gary Hadden, Department of Psychiatry, Duke University, for his expert assistance.

References
33. Keep PJ, Jenkins JR. From the other end of the needle. The p...

