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BACKGROUND: Ward patients who experience unplanned
transfer to intensive care units have excess morbidity and
mortality.

OBJECTIVE: To develop a predictive model for prediction
of unplanned transfer from the medical–surgical ward to
intensive care (or death on the ward in a patient who was
‘‘full code’’) using data from a comprehensive inpatient
electronic medical record (EMR).

DESIGN: Retrospective case-control study; unit of analysis
was a 12-hour patient shift. Shifts where a patient
experienced an unplanned transfer were event shifts; shifts
without a transfer were comparison shifts. Hospitalization
records were transformed into 12-hour shift records, with
10 randomly selected comparison shifts identified for each
event shift. Analysis employed logistic regression and split
validation.

SETTING: Integrated healthcare delivery system in
Northern California.

PATIENTS: Hospitalized adults at 14 hospitals with
comprehensive inpatient EMRs.

MEASUREMENTS: Predictors included vital signs, laboratory
test results, severity of illness scores, longitudinal chronic
illness burden scores, transpired hospital length of stay, and
care directives. Patients were also given a retrospective,
electronically (not manually assigned) Modified Early Warning
Score, or MEWS(re). Outcomes were transfer to the intensive
care unit (ICU) from the ward or transitional care unit, or death
outside the ICU among patients who were ‘‘full code’’.

RESULTS: We identified 4,036 events and 39,782
comparison shifts from a cohort of 102,422 patients’
hospitalizations. The MEWS(re) had a c-statistic of 0.709 in
the derivation and 0.698 in the validation dataset;
corresponding values for the EMR-based model were 0.845
and 0.775.

LIMITATIONS: Using these algorithms requires hospitals
with comprehensive inpatient EMRs and longitudinal data.

CONCLUSIONS: EMR-based detection of impending
deterioration outside the ICU is feasible in integrated
healthcare delivery systems. Journal of Hospital Medicine
2012;7:388–395.VC 2012 Society of Hospital Medicine

Patients in general medical–surgical wards who expe-
rience unplanned transfer to the intensive care unit
(ICU) have increased mortality and morbidity.1–3

Using an externally validated methodology permitting
assessment of illness severity and mortality risk among
all hospitalized patients,4,5 we recently documented
observed-to-expected mortality ratios >3.0 and excess
length of stay of 10 days among patients who experi-
enced such transfers.6

It is possible to predict adverse outcomes among
monitored patients (eg, patients in the ICU or under-
going continuous electronic monitoring).7,8 However,
prediction of unplanned transfers among medical–

surgical ward patients presents challenges. Data
collection (vital signs and laboratory tests) is relatively
infrequent. The event rate (�3% of hospital admis-
sions) is low, and the rate in narrow time periods (eg,
12 hours) is extremely low: a hospital with 4000
admissions per year might experience 1 unplanned
transfer to the ICU every 3 days. Not surprisingly,
performance of models suitable for predicting
ward patients’ need for intensive care within narrow
time frames have been disappointing.9 The Modified
Early Warning Score (MEWS), has a c-statistic, or
area under the receiver operator characteristic of
0.67,10–12 and our own model incorporating 14 labo-
ratory tests, but no vital signs, has excellent perform-
ance with respect to predicting inpatient mortality,
but poor performance with respect to unplanned
transfer.6

In this report, we describe the development and vali-
dation of a complex predictive model suitable for use
with ward patients. Our objective for this work was
to develop a predictive model based on clinical and
physiologic data available in real time from a compre-
hensive electronic medical record (EMR), not a
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clinically intuitive, manually assigned tool. The out-
come of interest was unplanned transfer from the
ward to the ICU, or death on the ward in a patient
who was ‘‘full code.’’ This model has been developed
as part of a regional effort to decrease preventable
mortality in the Northern California Kaiser Perma-
nente Medical Care Program (KPMCP), an integrated
healthcare delivery system with 22 hospitals.

MATERIALS AND METHODS
For additional details, see the Supporting Information,
Appendices 1–12, in the online version of this article.
This project was approved by the KPMCP Institu-

tional Board for the Protection of Human Subjects.
The Northern California KPMCP serves a total pop-

ulation of approximately 3.3 million members. All
Northern California KPMCP hospitals and clinics
employ the same information systems with a common
medical record number and can track care covered by
the plan but delivered elsewhere. Databases main-
tained by the KPMCP capture admission and dis-
charge times, admission and discharge diagnoses and
procedures (assigned by professional coders), bed
histories permitting quantification of intra-hospital
transfers, inter-hospital transfers, as well as the results
of all inpatient and outpatient laboratory tests. In July
2006, the KPMCP began deployment of the EMR
developed by Epic Systems Corporation (www.epic.
com), which has been adapted for the KPMCP and is
known as KP HealthConnect (KPHC) in its hospitals.
The last of these 22 hospitals went online in March
2010.
Our setting consisted of 14 hospitals in which the

KPHC inpatient EMR had been running for at least 3
months (the KPMCP Antioch, Fremont, Hayward,
Manteca, Modesto, Roseville, Sacramento, Santa
Clara, San Francisco, Santa Rosa, South Sacramento,
South San Francisco, Santa Teresa, and Walnut Creek
hospitals). We have described the general characteris-
tics of KPMCP hospitals elsewhere.4,6 Our initial
study population consisted of all patients admitted to
these hospitals who met the following criteria: hospi-
talization began from November 1, 2006 through De-
cember 31, 2009; initial hospitalization occurred at a
Northern California KPMCP hospital (ie, for inter-
hospital transfers, the first hospital stay occurred
within the KPMCP); age �18 years; hospitalization
was not for childbirth; and KPHC had been opera-
tional at the hospital for at least 3 months.

Analytic Approach

The primary outcome for this study was transfer to
the ICU after admission to the hospital among
patients residing either in a general medical–surgical
ward (‘‘ward’’) or transitional care unit (TCU), or
death in the ward or TCU in a patient who was ‘‘full
code’’ at the time of death (ie, had the patient sur-
vived, s/he would have been transferred to the ICU).

The unit of analysis for this study was a 12-hour
patient shift, which could begin with a 7 AM T0

(henceforth, day shift) or a 7 PM T0 (night shift); in
other words, we aimed to predict the occurrence of an
event within 12 hours of T0 using only data available
prior to T0. A shift in which a patient experienced
the primary study outcome is an event shift, while one
in which a patient did not experience the primary
outcome is a comparison shift. Using this approach,
an individual patient record could consist of both
event and comparison shifts, since some patients
might have multiple unplanned transfers and some
patients might have none. Our basic analytic
approach consisted of creating a cohort of event and
comparison shifts (�10 comparison shifts were ran-
domly selected for each event shift), splitting the
cohort into a derivation dataset (50%) and validation
dataset (50%), developing a model using the deriva-
tion dataset, then applying the coefficients of the deri-
vation dataset to the validation dataset. Because some
event shifts were excluded due to the minimum 4-
hour length-of-stay requirement, we also applied
model coefficients to these excluded shifts and a set of
randomly selected comparison shifts.
Since the purpose of these analyses was to develop

models with maximal signal extraction from sparsely
collected predictors, we did not block a time period
after the T0 to allow for a reaction time to the alarm.
Thus, since some events could occur immediately after
the T0 (as can be seen in the Supporting Information,
Appendices, in the online version of this article), our
models would need to be run at intervals that are
more frequent than 2 times a day.

Independent Variables

In addition to patients’ age and sex, we tested the fol-
lowing candidate independent variables. Some of these
variables are part of the KPMCP risk adjustment
model4,5 and were available electronically for all
patients in the cohort. We grouped admission diagno-
ses into 44 broad diagnostic categories (primary con-
ditions), and admission types into 4 groups (emer-
gency medical, emergency surgical, elective medical,
and elective surgical). We quantified patients’ degree
of physiologic derangement in the 72 hours preceding
hospitalization with a Laboratory-based Acute Physi-
ology Score (LAPS) using 14 laboratory test results
prior to hospitalization; we also tested individual lab-
oratory test results obtained after admission to the
hospital. We quantified patients’ comorbid illness bur-
den using a COmorbidity Point Score (COPS) based
on patients’ preexisting diagnoses over the 12-month
period preceding hospitalization.4 We extracted tem-
perature, heart rate, respiratory rate, systolic blood
pressure, diastolic blood pressure, oxygen saturation,
and neurological status from the EMR. We also tested
the following variables based on specific information
extracted from the EMR: shock index (heart rate
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divided by systolic blood pressure)13; care directive
status (patients were placed into 4 groups: full code,
partial code, do not resuscitate [DNR], and no care
directive in place); and a proxy for measured lactate
(PML; anion gap/serum bicarbonate � 100).14–16 For
comparison purposes, we also created a retrospective
electronically assigned MEWS, which we refer to as the
MEWS(re), and we assigned this score to patient records
electronically using data from KP HealthConnect.

Statistical Methods

Analyses were performed in SAS 9.1, Stata 10, and
R 2.12. Final validation was performed using SAS (SAS
Institute Inc., Carey, North Carolina). Since we did not
limit ourselves to traditional severity-scoring approaches
(eg, selecting the ‘‘worst’’ heart rate in a given time
interval), but also included trend terms (eg, change in
heart rate over the 24 hours preceding T0), the number
of potential variables to test was very large. Detailed
description of the statistical strategies employed for
variable selection is provided in the Supporting Infor-
mation, Appendices, in the online version of this article.
Once variables were selected, our basic approach was
to test a series of diagnosis-specific logistic regression
submodels using a variety of predictors that included
vital signs, vital signs trends (eg, most recent heart rate
minus earliest heart rate, heart rate over preceding 24
hours), and other above-mentioned variables.

We assessed the ability of a submodel to correctly
distinguish patients who died, from survivors, using
the c-statistic, as well as other metrics recommended
by Cook.17 At the end of the modeling process, we
pooled the results across all submodels. For vital
signs, where the rate of missing data was <3%, we
tested submodels in which we dropped shifts with
missing data, as well as submodels in which we
imputed missing vital signs to a normal value. For lab-
oratory data, where the rate of missing data for a
given shift was much greater, we employed a proba-
bilistic imputation method that included consideration
of when a laboratory test result became available.

RESULTS
During the study period, a total of 102,488 patients
experienced 145,335 hospitalizations at the study hospi-
tals. We removed 66 patients with 138 hospitalizations
for data quality reasons, leaving us with our initial study
sample of 102,422 patients whose characteristics are
summarized in Table 1. Table 1, in which the unit of
analysis is an individual patient, shows that patients
who experienced the primary outcome were similar to
those patients described in our previous report, in terms
of their characteristics on admission as well as in experi-
encing excess morbidity and mortality.6

Figure 1 shows how we developed the analysis
cohort, by removing patients with a comfort-care-only

TABLE 1. Characteristics of Final Study Cohort

Never Admitted to ICU Direct Admit to ICU From ED Unplanned Transfer to ICU* Other ICU Admission†

N 89,269 5963 2880 4310
Age (mean 6 SD) 61.26 6 18.62 62.25 6 18.13 66.12 6 16.20 64.45 6 15.91
Male (n, %) 37,228 (41.70%) 3091 (51.84%) 1416 (49.17%) 2378 (55.17%)
LAPS‡ (mean 6 SD) 13.02 6 15.79 32.72 6 24.85 24.83 6 21.53 11.79 6 18.16
COPS§ (mean 6 SD) 67.25 6 51.42 73.88 6 57.42 86.33 6 59.33 78.44 6 52.49
% Predicted mortality risk (mean 6 SD) 1.93% 6 3.98% 7.69% 6 12.59% 5.23% 6 7.70% 3.66% 6 6.81%
Survived first hospitalization to dischargek 88,479 (99.12%) 5336 (89.49%) 2316 (80.42%) 4063 (94.27%)
Care order on admission

Full code 78,877 (88.36%) 5198 (87.17%) 2598 (90.21%) 4097 (95.06%)
Partial code 664 (0.74%) 156 (2.62%) 50 (1.74%) 27 (0.63%)
Comfort care 21 (0.02%) 2 (0.03%) 0 (0%) 0 (0%)
DNR 8227 (9.22%) 539 (9.04%) 219 (7.60%) 161 (3.74%)
Comfort care and DNR 229 (0.26%) 9 (0.15%) 2 (0.07%) 2 (0.05%)
No order 1251 (1.40%) 59 (0.99%) 11 (0.38%) 23 (0.53%)

Admission diagnosis (n, %)
Pneumonia 2385 (2.67%) 258 (4.33%) 242 (8.40%) 68 (1.58%)
Sepsis 5822 (6.52%) 503 (8.44%) 279 (9.69%) 169 (3.92%)
GI bleeding 9938 (11.13%) 616 (10.33%) 333 (11.56%) 290 (6.73%)
Cancer 2845 (3.19%) 14 (0.23%) 95 (3.30%) 492 (11.42%)

Total hospital length of stay (days 6 SD) 3.08 6 3.29 5.37 6 7.50 12.16 6 13.12 8.06 6 9.53

NOTE: All overnight admissions to the study hospitals excluding 66 patients who were removed due to incomplete data. Column categories are mutually exclusive and based on a patient’s first hospitalization during the study
time period.
Abbreviations: COPS, COmorbidity Point Score, DNR, do not resuscitate; ED, emergency department; GI, gastrointestinal; ICU, intensive care unit; LAPS, Laboratory Acute Physiology Score; SD, standard deviation. * This group
consists of all patients who meet our case definition and includes: 1) patients who had an unplanned transfer to the ICU from the transitional care unit (TCU) or ward; and 2) patients who died on the ward without a DNR order in
place at the time of death (ie, who would have been transferred to the ICU had they survived). †This group includes patients admitted directly to the ICU from the operating room, post-anesthesia recovery, or an unknown unit, as
well as patients with a planned transfer to the ICU. ‡LAPS point score based on 14 laboratory test results obtained in the 72 hr preceding hospitalization. With respect to a patient’s physiologic derangement, the unadjusted rela-
tionship of LAPS and inpatient mortality is as follows: a LAPS <7 is associated with a mortality risk of <1%; <7 to 30 with a mortality risk of 1%–5%; 30 to 60 with a mortality risk of 5%–9%; and >60 with a mortality risk of 10%
or more. See text and Escobar et al4 for more details. §COPS point score based on a patient’s healthcare utilization diagnoses (during the year preceding admission to the hospital). Analogous to present on admission (POA) cod-
ing. Scores can range from 0 to a theoretical maximum of 701, but scores >200 are rare. With respect to a patient’s preexisting comorbidity burden, the unadjusted relationship of COPS and inpatient mortality is as follows: a
COPS <50 is associated with a mortality risk of <1%; <100 with a mortality risk of 1%–5%; 100 to 145 with a mortality risk of 5%–10%; and >145 with a mortality risk of 10% or more. See text and Escobar et al4 for more details.
kNumbers for patients who survived last hospitalization to discharge are available upon request.
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order placed within 4 hours after admission (369
patients/744 hospitalizations) and patients who were
never admitted to the ward or TCU (7,220/10,574).
This left a cohort consisting of 94,833 patients who
experienced 133,879 hospitalizations spanning a total
of 1,079,062 shifts. We then removed shifts where: 1)
a patient was not on the ward at the start of a shift,
or was on the ward for <4 hours of a shift; 2) the
patient had a comfort-care order in place at the start
of the shift; and 3) the patient died and was ineligible
to be a case (the patient had a DNR order in place or
died in the ICU). The final cohort eligible for sampling

consisted of 846,907 shifts, which involved a total of
92,797 patients and 130,627 hospitalizations. There
were a total of 4,036 event shifts, which included
3,224 where a patient was transferred from the
ward to the ICU, 717 from the TCU to the ICU,
and 95 where a patient died on the ward or TCU
without a DNR order in place. We then randomly
selected 39,782 comparison shifts. Thus, our final
cohort for analysis included 4,036 event shifts (1,979
derivation/2,057 validation and 39,782 comparison
shifts (19,509/20,273). As a secondary validation,
we also applied model coefficients to the 429 event

FIG. 1. Development of sampling cohort. *There are 429 event shifts excluded; see text for details. Abbreviations: DNR, do not resuscitate; ICU, intensive care

unit; TCU, transitional care unit.
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shifts excluded due to the <4-hour length-of-stay
requirement.
Table 2 compares event shifts with comparison

shifts. In the 24 hours preceding ICU transfer, patients
who were subsequently transferred had statistically
significant, but not necessarily clinically significant,
differences in terms of these variables. However, miss-
ing laboratory data were more common, ranging from
18% to 31% of all shifts (we did not incorporate lab-
oratory tests where �35% of the shifts had missing
data for that test).
After conducting multiple analyses using the deriva-

tion dataset, we developed 24 submodels, a compro-
mise between our finding that primary-condition-
specific models showed better performance and the
fact that we had very few events among patients with
certain primary conditions (eg, pericarditis/valvular
heart disease), which forced us to create composite
categories (eg, a category pooling patients with
pericarditis, atherosclerosis, and peripheral vascular
disease). Table 3 lists variables included in our final
submodels.

Table 4 summarizes key results in the validation
dataset. Across all diagnoses, the MEWS(re) had c-sta-
tistic of 0.709 (95% confidence interval, 0.697–0.721)
in the derivation dataset and 0.698 (0.686–0.710) in
the validation dataset. In the validation dataset, the
MEWS(re) performed best among patients with a set
of gastrointestinal diagnoses (c ¼ 0.792; 0.726–0.857)
and worst among patients with congestive heart fail-
ure (0.541; 0.500–0.620). In contrast, across all pri-
mary conditions, the EMR-based models had a c-sta-
tistic of 0.845 (0.826–0.863) in the derivation dataset
and 0.775 (0.753–0.797) in the validation dataset. In
the validation dataset, the EMR-based models also
performed best among patients with a set of gastroin-
testinal diagnoses (0.841; 0.783–0.897) and worst
among patients with congestive heart failure (0.683;
0.610–0.755). A negative correlation (R ¼ �0.63)
was evident between the number of event shifts in a
submodel and the drop in the c-statistic seen in the
validation dataset.
We also compared model performance when our

datasets were restricted to 1 randomly selected

TABLE 2. Event and Comparison Shifts

Predictor Event Shifts

Comparison

Shifts P

Number 4036 39,782
Age (mean 6 SD) 67.19 6 15.25 65.41 6 17.40 <0.001
Male (n, %) 2007 (49.73%) 17,709 (44.52%) <0.001
Day shift 1364 (33.80%) 17,714 (44.53%) <0.001
LAPS* 27.89 6 22.10 20.49 6 20.16 <0.001
COPS† 116.33 6 72.31 100.81 6 68.44 <0.001
Full code‡ (n, %) 3496 (86.2%) 32,156 (80.8%) <0.001
ICU shift during hospitalization§ 3964 (98.22%) 7197 (18.09%) <0.001
Unplanned transfer to ICU

during hospitalizationk
353 (8.8%) 1466 (3.7%) <0.001

Temperature (mean 6 SD) 98.15 (1.13) 98.10 (0.85) 0.009
Heart rate (mean 6 SD) 90.30 (20.48) 79.86 (5.27) <0.001
Respiratory rate (mean 6 SD) 20.36 (3.70) 18.87 (1.79) <0.001
Systolic blood pressure (mean 6 SD) 123.65 (23.26) 126.21 (19.88) <0.001
Diastolic blood pressure (mean 6 SD) 68.38 (14.49) 69.46 (11.95) <0.001
Oxygen saturation (mean 6 SD) 95.72% (3.00) 96.47 % (2.26) <0.001
MEWS(re)¶ (mean 6 SD) 3.64 (2.02) 2.34 (1.61) <0.001
% <5 74.86% 92.79%
% �5 25.14% 7.21% <0.001

Proxy for measured lactate# (mean 6 SD) 36.85 (28.24) 28.73 (16.74) <0.001
% Missing in 24 hr before start of shift** 17.91% 28.78% <0.001

Blood urea nitrogen (mean 6 SD) 32.03 (25.39) 22.72 (18.9) <0.001
% Missing in 24 hr before start of shift 19.67% 20.90% <0.001

White blood cell count � 1000 (mean 6 SD) 12.33 (11.42) 9.83 (6.58) <0.001
% Missing in 24 hr before start of shift 21.43% 30.98% <0.001

Hematocrit (mean 6 SD) 33.08 (6.28) 33.07 (5.25) 0.978
% Missing in 24 hr before start of shift 19.87% 29.55% <0.001

NOTE: Code status, vital sign, and laboratory values measures closest to the start of the shift (7 AM or 7 PM)
are used.
Abbreviations: COPS, COmorbidity Point Score; ICU, intensive care unit; LAPS, Laboratory Acute Physiol-
ogy Score; MEWS(re), Modified Early Warning Score (retrospective electronic); SD, standard deviation.
* LAPS; see Table 1, text, and Escobar et al4 for more details. †COPS; see Table 1, text, and Escobar et al4

for more details. ‡Refers to patients who had an active ‘‘full code’’ order at the start of the sampling time
frame. §See text for explanation of sampling time frame, and how both cases and controls could have been
in the ICU. kSee text for explanation of how both cases and controls could have experienced an unplanned
transfer to the ICU. ¶MEWS(re); see text and Subbe et al10 for a description of this score. # (Anion gap �
bicarbonate)� 100. ** Rates of missing data for vital signs are not shown because <3% of the shifts were
missing these data.

TABLE 3. Variables Included in Final Electronic
Medical Record-Based Models

Variable Description

Directive status Full code or not full code
LAPS* Admission physiologic severity of illness score (continuous variable

ranging from 0 to 256). Standardized and included as
LAPS and LAPS squared

COPS† Comorbidity burden score (continuous variable ranging from 0 to 701).
Standardized and included as COPS and COPS squared.

COPS status† Indicator for absent comorbidity data
LOS at T0 Length of stay in the hospital (total time in hours) at the T0; standardized.
T0 time of day 7 AM or 7 PM

Temperature Worst (highest) temperature in 24 hr preceding T0; variability
in temperature in 24 hr preceding T0.

Heart rate Most recent heart rate in 24 hr preceding T0; variability in heart rate
in 24 hr preceding T0.

Respiratory rate Most recent respiratory rate in 24 hr preceding T0; worst (highest)
respiratory rate in 24 hr preceding T0; variability in respiratory
rate in 24 hr preceding T0.

Diastolic blood
pressure

Most recent diastolic blood pressure in 24 hr preceding T0 transformed
by subtracting 70 from the actual value and squaring the result.
Any value above 2000 is subsequently then set to 2000, yielding
a continuous variable ranging from 0 to 2000.

Systolic pressure Variability in systolic blood pressure in 24 hr preceding T0.

Pulse oximetry Worst (lowest) oxygen saturation in 24 hr preceding T0;
variability in oxygen saturation in 24 hr preceding T0.

Neurological status Most recent neurological status check in 24 hr preceding T0.
Laboratory tests‡ Blood urea nitrogen

Proxy for measured lactate ¼ (anion gap � serum bicarbonate) � 100
Hematocrit
Total white blood cell count

Abbreviations: COPS, COmorbidity Point Score; LAPS, Laboratory Acute Physiology Score; LOS, length of
stay. * LAPS based on 14 laboratory test results obtained in the 72 hr preceding hospitalization. See text
and Escobar et al4 for details. †COPS based on a patient’s diagnoses in the 12 mo preceding hospitaliza-
tion. See text and Escobar et al4 for details. Indicator variable (for patients in whom a COPS could not be
obtained) also included in models. ‡See text and Supporting Information, Appendices, in the online version
of this article for details on imputation strategy employed when values were missing. See Wrenn14 and
Rocktaeschel et al16 for justification for use of the combination of anion gap and serum bicarbonate.
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observation per patient; in these analyses, the total
number of event shifts was 3,647 and the number of
comparison shifts was 29,052. The c-statistic for the
MEWS(re) in the derivation dataset was 0.709
(0.694–0.725); in the validation dataset, it was 0.698
(0.692–0.714). The corresponding values for the
EMR-based models were 0.856 (0.835–0.877) and
0.780 (0.756–0.804). We also tested models in which,
instead of dropping shifts with missing vital signs, we
imputed missing vital signs to their normal value. The
c-statistic for the EMR-based model with imputed
vital sign values was 0.842 (0.823–0.861) in the
derivation dataset and 0.773 (0.752–0.794) in the val-
idation dataset. Lastly, we applied model coefficients
to a dataset consisting of 4,290 randomly selected
comparison shifts plus the 429 shifts excluded because
of the 4-hour length-of-stay criterion. The c-statistic
for this analysis was 0.756 (0.703–0.809).
As a general rule, the EMR-based models were more

than twice as efficient as the MEWS(re). For example,
a MEWS(re) threshold of �6 as the trigger for an
alarm would identify 15% of all transfers to the ICU,
with 34.4 ‘‘false alarms’’ for each transfer; in contrast,
using the EMR-based approach to identify 15% of all
transfers, there were 14.5 ‘‘false alarms’’ for each
transfer. Applied to the entire KPMCP Northern Cali-
fornia Region, using the MEWS(re), a total of 52
patients per day would need to be evaluated, but only
22 per day using the EMR-based approach. If one
employed a MEWS(re) threshold of �4, this would
lead to identification of 44% of all transfers, with a
ratio of 69 ‘‘false alarms’’ for each transfer; using the
EMR, the ratio would be 34 to 1. Across the entire
KPMCP, a total of 276 patients per day (or about

19.5 a day per hospital) would need to be evaluated
using the MEWS(re), but only 136 (or about 9.5 per
hospital per day) using the EMR.

DISCUSSION
Using data from a large hospital cohort, we have
developed a predictive model suitable for use in non-
ICU populations cared for in integrated healthcare
settings with fully automated EMRs. The overall per-
formance of our model, which incorporates acute
physiology, diagnosis, and longitudinal data, is supe-
rior to the predictive ability of a model that can be
assigned manually. This is not surprising, given that
scoring systems such as the MEWS make an explicit
tradeoff losing information found in multiple variables
in exchange for ease of manual assignment. Currently,
the model described in this report is being imple-
mented in a simulated environment, a final safety test
prior to piloting real-time provision of probability
estimates to clinicians and nurses. Though not yet
ready for real-time use, it is reasonable for our model
to be tested using the KPHC ‘‘shadow’’ server, since
evaluation in a simulated environment constitutes a
critical evaluation step prior to deployment for clinical
use. We also anticipate further refinement and revali-
dation to occur as more inpatient data become avail-
able in the KPMCP and elsewhere.
A number of limitations to our approach must be

emphasized. In developing our models, we determined
that, while modeling by clinical condition was impor-
tant, the study outcome was rare for some primary
conditions. In these diagnostic groups, which
accounted for 12.5% of the event shifts and 10.6% of
the comparison shifts, the c-statistic in the validation
dataset was <0.70. Since all 22 KPMCP hospitals are
now online and will generate an additional 150,000
adult hospitalizations per year, we expect to be able
to correct this problem prior to deployment of these
models for clinical use. Having additional data will
permit us to improve model discrimination and thus
decrease the evaluation-to-detection ratio. In future
iterations of these models, more experimentation with
grouping of International Classification of Diseases
(ICD) codes may be required. The problem of group-
ing ICD codes is not an easy one to resolve, in that
diagnoses in the grouping must share common patho-
physiology while having a grouping with a sufficient
number of adverse events for stable statistical models.
Ideally, it would have been desirable to employ

a more objective measure of deterioration, since the
decision to transfer a patient to the ICU is discretion-
ary. However, we have found that key data points
needed to define such a measure (eg, vital signs) are
not consistently charted when a patient deteriorates—
this is not surprising outside the research setting, given
that nurses and physicians involved in a transfer
may be focusing on caring for the patient rather
than immediately charting. Given the complexities of

TABLE 4. Best and Worst Performing Submodels in
the Validation Dataset

No. of Shifts in

Validation Dataset c-Statistic

Diagnoses Group* Event Comparison MEWS(re)†
EMR

Model‡

Acute myocardial infarction 36 169 0.541 0.572
Diseases of pulmonary circulation

and cardiac dysrhythmias
40 329 0.565 0.645

Seizure disorders 45 497 0.594 0.647
‘‘Rule out’’ myocardial infarction 77 727 0.602 0.648
Pneumonia 163 847 0.741 0.801
GI diagnoses, set A§ 58 942 0.755 0.803
GI diagnoses, set Bk 256 2,610 0.772 0.806
GI diagnoses, set C¶ 46 520 0.792 0.841
All diagnosis 2,032 20,106 0.698 0.775

Abbreviations: EMR, electronic medical record; GI, gastrointestinal; MEWS(re), Modified Early Warning
Score (retrospective electronic). * Specific International Classification of Diseases (ICD) codes used are
detailed in the Supporting Information, Appendices, in the online version of this article. †MEWS(re); see text,
Supporting Information, Appendices, in the online version of this article, and Subbe et al10 for more details.
‡Model based on comprehensive data from EMR; see text, Table 3, and Supporting Information, Appendi-
ces, in the online version of this article for more details. §This group of diagnoses includes appendicitis,
cholecystitis, cholangitis, hernias, and pancreatic disorders. kThis group of diagnoses includes: gastrointes-
tinal hemorrhage, miscellaneous disorders affecting the stomach and duodenum, diverticulitis, abdominal
symptoms, nausea with vomiting, and blood in stool. ¶This group of diagnoses includes inflammatory bowel
disease, malabsorption syndromes, gastrointestinal obstruction, and enteritides.
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end-of-life-care decision-making, we could not employ
death as the outcome of interest. A related issue is
that our model does not differentiate between reasons
for needing transfer to the ICU, an issue recently
discussed by Bapoje et al.18

Our model does not address an important issue
raised by Bapoje et al18 and Litvak, Pronovost, and
others,19,20 namely, whether a patient should have
been admitted to a non-ICU setting in the first place.
Our team is currently developing a model for doing
exactly this (providing decision support for triage in
the emergency department), but discussion of this
methodology is outside the scope of this article.
Because of resource and data limitations, our model

also does not include newborns, children, women
admitted for childbirth, or patients transferred from
non-KPMCP hospitals. However, the approach
described here could serve as a starting point for
developing models for these other populations.
The generalizability of our model must also be con-

sidered. The Northern California KPMCP is unusual
in having large electronic databases that include physi-
ologic as well as longitudinal patient data. Many hos-
pitals cannot take advantage of all the methods
described here. However, the methods we employed
could be modified for use by hospital systems in coun-
tries such as Great Britain and Canada, and entities
such as the Veterans Administration Hospital System
in the United States. The KPMCP population, an
insured population with few barriers to access, is
healthier than the general population, and some popu-
lation subsets are underrepresented in our cohort.
Practice patterns may also vary. Nonetheless, the
model described here could serve as a good starting
point for future collaborative studies, and it would be
possible to develop models suitable for use by stand-
alone hospitals (eg, recalibrating so that one used a
Charlson comorbidity21 score based on present
on-admission codes rather than the COPS).
The need for early detection of patient deterioration

has played a major role in the development of ‘‘rapid
response teams,’’ as well as scores such as the MEWS.
In particular, entities such as the Institute for Health-
care Improvement have advocated the use of early
warning systems.22 However, having a statistically
robust model to support an early warning system is
only part of the solution, and a number of new chal-
lenges must then be addressed. The first is actual elec-
tronic deployment. Existing inpatient EMRs were not
designed with complex calculations in mind, and we
anticipate that some degradation in performance will
occur when we test our models using real-time data cap-
ture. As Bapoje et al point out, simply having an alert
may be insufficient, since not all transfers are prevent-
able.18 Early warning systems also raise ethical issues
(for example, what should be done if an alert leads a
clinician to confront the fact that an end-of-life-care dis-
cussion needs to occur?). From a research perspective, if

one were to formally test the benefits of such models, it
would be critical to define outcome measures other than
death (which is strongly affected by end-of-life-care deci-
sions) or ICU transfer (which is often desirable).
In conclusion, we have developed an approach for

predicting impending physiologic deterioration of hos-
pitalized adults outside the ICU. Our approach illus-
trates how organizations can take maximal advantage
of EMRs in a manner that exceeds ‘‘meaningful use’’
specifications.23,24 Our study highlights the possibility
of using fully automated EMR data for building and
applying sophisticated statistical models in settings
other than the highly monitored ICU without the need
for additional equipment. It also expands the universe
of severity scoring to one in which probability estimates
are provided in real time and throughout an entire hos-
pitalization. Model performance will undoubtedly
improve over time, as more patient data become avail-
able. Although our approach has important limitations,
it is suitable for testing using real-time data in a simu-
lated environment. Such testing would permit identifi-
cation of unanticipated problems and quantification of
the degradation of model performance due to ‘‘real
life’’ factors, such as delays in vital signs charting or
EMR system ‘‘brownouts.’’ It could also serve as the
springboard for future collaborative studies, with a
broader population base, in which the EMR becomes a
tool for care, not just documentation.
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