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BACKGROUND: Lactic acidosis (LA) is common in hospitalized patients and is associated with poor clinical outcomes. There

have been major recent advances in our understanding of lactate generation and physiology. However, treatment of LA is an

area of controversy and uncertainty, and the use of agents to raise pH is not clearly beneficial.

AIM AND METHODS: We reviewed animal and human studies on the pathogenesis, impact, and treatment of LA, published in

the English language and available through the PubMed/MEDLINE database. Our aim was to clarify the physiology of the

generation of LA, its impact on outcomes, and the different treatment modalities available. We also examined relevant data

regarding LA induced by medications commonly prescribed by hospitalists: biguanides, nucleoside analog reverse-

transcriptase inhibitors (NRTIs), linezolid, and lorazepam.

RESULTS/CONCLUSIONS: Lactic acid is a marker of tissue ischemia but it also may accumulate without tissue

hypoperfusion. In the latter circumstance, lactic acid accumulation may be an adaptive mechanism—a novel possibility

quite in contrast to the traditional view of lactic acid as only a marker of tissue ischemia. Studies on the treatment of LA

with sodium bicarbonate or other buffers fail to show consistent clinical benefit. Severe acidemia in the setting of LA is a

particularly poorly studied area. In the settings of medication-induced LA, optimal treatment, apart from prompt cessation

of the offending agent, is still unclear. Journal of Hospital Medicine 2010;5:E1–E7. VC 2010 Society of Hospital Medicine.
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Lactic acidosis (LA) is common in hospitalized patients and

is associated with a high mortality.1,2 Commonly, it is

defined as a lactic acid concentration greater than 5 mmol/L

with a pH less than 7.35.3 There are no evidence-based

guidelines for the treatment of LA despite progress in our

understanding of its pathophysiology.3–6 This is not surpris-

ing, given the uncertainty regarding the impact of LA itself

on clinical outcomes. In this regard, it is interesting to note

that, despite its well-recognized role as a marker of tissue hy-

poxia, lactate accumulation appears to have beneficial effects

and may function as an adaptive mechanism. This raises the

possibility that therapy directed at altering this adaptation

may be detrimental. Pursuing ‘‘correction’’ of the pH in LA

has been shown to have untoward physiologic effects. These

and other ambiguities in the pathophysiology and treatment

of LA are the focus of this review.

Lactate Metabolism
The body produces approximately 1400 mmol of lactate

daily.7 Lactate is derived from the metabolism of pyruvate

through an anaerobic reaction that occurs in all tissues (Fig-

ure 1). The liver is the primary site of lactate clearance and

can metabolize up to 100 mmol per hour under normal

conditions.8 There, lactate is converted to glucose to serve

as an energy source during periods of hypoxia (Figure 2).9

Approximately 20% to 30% of the daily lactate load is

metabolized by the kidneys.10,11 Renal clearance is increased

in acidosis12 and is maintained even in the presence of low

renal perfusion.10,12,13 Renal lactate clearance is primarily

through metabolism and not excretion.10,14

LA Subtypes
Generally, lactic acid accumulation results from excess lactic

acid production and not from reduced clearance.15 In cases

of fulminant liver failure, it is due to a combination of

decreased clearance and tissue hypoxia.16 In the setting of

tissue hypoxia, an impairment of mitochondrial oxidative

capacity results in the accumulation of pyruvate and gener-

ation of lactate. Lactic acid accumulation through this

mechanism has historically been described as Type A LA.7

Hence, in critically ill patients lactate has traditionally been

viewed as a marker of tissue hypoxia.15,17–21 Hyperlactate-

mia without tissue hypoxia has been referred to as type B

LA. This is seen in a variety of circumstances. In sepsis, for

example, several studies have shown lactic acid accumula-

tion, despite adequate oxygen delivery.22–24

Hyperlactatemia may also occur in cases of ‘‘pure’’ mito-

chondrial dysfunction, which can be induced by commonly

prescribed medications such as the biguanides, nucleoside

analog reverse-transcriptase inhibitors (NRTIs), and line-

zolid.25–27 Alternatively, lactate generation frommetabolism of

agents such as propylene glycol is possible. Finally, excessive

lactate generation may occur following stress due to altered

carbohydrate metabolism, or with respiratory alkalosis.28–31
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Lactate: A Metabolic Adaptation
Lactate was traditionally considered only as a marker of tis-

sue hypoxia and anaerobic metabolism.17 This is certainly

the case in situations of poor perfusion such as cardio-

genic,15,18 vasopressor-resistant,19 or hypovolemic shock.20,21

Alternative explanations for lactic acid accumulation,

without tissue hypoperfusion, include catecholamine-

induced alterations in glycolysis,32,33 mitochondrial distur-

bances,34–36 and increased pyruvate production combined

with increased glucose entry into cells.24,37 In addition, the

activity of an enzyme regulating lactate metabolism, pyru-

vate dehydrogenase kinase, increases in sepsis.38 This

enzyme inactivates the pyruvate dehydrogenase (PDH) com-

plex, which metabolizes pyruvate. Pyruvate and lactate may

accumulate as a result. These changes partly explain the

generation of LA in sepsis, independent of any effect of

diminished tissue perfusion.

Recognizing the body’s tendency toward homeostasis, it

is appealing to speculate that lactate accumulation is adapt-

ive.9 A number of findings support this. For example, lactate

may act to ‘‘shuttle’’ energy between organs, or between cell

types in the same organ. The astrocyte–neuron lactate shut-

tle and the spermatogenic lactate shuttle are 2 examples of

lactate’s valuable effects on cellular metabolism.39 In the

astrocyte–neuron lactate shuttle, astrocytes support the

increased metabolic demands of neurons through lactic

acid production.40 Specifically, the neurotransmitter gluta-

mate is released by the neurons and taken up by the astro-

cytes. Astrocytes produce lactate, which then moves back to

the neuron to be used as an energy source. Glutamine, also

released by the astrocytes, leads to the regeneration of glu-

tamate and the potential to restart the cycle.39

Animal and human studies have suggested that, in peri-

ods of stress, lactate is the preferential energy substrate in

the brain.41–44 The usefulness of increased lactate produc-

tion routinely seen in sepsis may thus represent multiple

adaptive processes aimed primarily at improving the deliv-

ery of energy substrates. Thus, therapeutic strategies aimed

specifically at lowering lactic acid levels may prove to have

deleterious effects on cellular metabolism.

Impact of LA on Morbidity and Mortality
The poor prognosis in patients with LA is well recog-

nized.2,45–48 For example, in a study of 126 patients with var-

ious causes of LA, the median survival was 38.5 hours and

30-day survival was 17%.2

Studies have revealed that LA with low pH is associated

with adverse effects on the cardiovascular system, particu-

larly a decrease in cardiac contractility.49,50 This effect is

particularly prominent with a pH below 7.20. In contrast,

acidosis in animal models has been shown to limit myocar-

dial infarct size after reperfusion.51,52 Variable effects of LA

on cell death have been found. A worsening of apoptosis in

myocytes has been noted;53 alternatively, protection from

hypoxic injury in hepatocytes and myocardium has been

observed.52,54 Thus, although LA is associated with poor

outcomes in human studies,2,45–47 it is still unclear to what

extent lactic acid accumulation is a marker of severe illness,

an independent effector of pathology, or a mechanism with

the potential to serve a protective role.

Available data indicate that lactate itself is not harmful.

Studies on infusion of lactate solutions to postoperative

patients was shown to be safe.55 Also, the fact that lactate

generation in states of respiratory alkalosis, stress, or altered

carbohydrate metabolism without sepsis is not associated

with worse outcomes supports the fact that lactic acid alone

may not be maladaptive.28–31

Similarly, low pH is not necessarily maladaptive. In the

postictal state,56 diabetic ketoacidosis,57 spontaneous respi-

ratory acidosis,58 or permissive hypercapnia,59 low blood pH

is not deleterious.

In summary, LA is associated with poor outcomes, and

indirect evidence suggests that it is the underlying causative

condition rather than the low pH or the lactate that is re-

sponsible for the dire outcomes.

Treatment of LA with Sodium Bicarbonate
Since excessive lactic acid generation is accompanied by

consumption of plasma bicarbonate and a fall in plasma

pH, sodium bicarbonate has been long proposed as a treat-

ment for LA. While theoretically appealing, this strategy has

not been validated by studies in animals or humans. Indeed,

bicarbonate administration in LA often has been shown to

be detrimental.60,61 The adverse effects of bicarbonate

administration in LA, while initially paradoxical, have a

number of possible explanations.

First, bicarbonate administration can induce a reduction

in intracellular pH.60,62,63 The mechanism involves bicar-

bonate’s effect to increase carbon dioxide (CO2) generation

FIGURE 1. Normal generation of lactate.

FIGURE 2. Cori cycle (used with permission from Ref. 9).

2010 Society of Hospital Medicine DOI 10.1002/jhm.600

Published online in wiley InterScience (www.interscience.wiley.com).

E2 Journal of Hospital Medicine Vol 5 No 4 April 2010



through mass action effect. Because the cell membrane is

more permeable to CO2 than to bicarbonate, intracellular

pH falls.64,65 In sepsis, this intracellular/extracellular pH dis-

crepancy may be more pronounced due to alterations in

blood flow.66 Other reports on outcomes of intracellular pH

with bicarbonate therapy show variable effects.67–72

Second, to the extent that bicarbonate administration

raises extracellular pH, it is associated with a reduction in

ionized calcium concentration, since the binding of calcium

to albumin is pH dependent.73 A sodium bicarbonate load

administered to patients with LA was associated with a sig-

nificant fall in ionized calcium concentration, whereas a so-

dium chloride load was not.1 This can affect cardiac func-

tion, as the latter varies proportionally with calcium levels.74

Third, bicarbonate administration may reduce tissue oxy-

gen delivery since the affinity of hemoglobin for oxygen

increases as pH rises (Bohr effect).75 The administration of

bicarbonate worsened systemic oxygen consumption in one

study76 and decreased oxygen delivery in another.75

Fourth, bicarbonate administration may indirectly

increase intracellular calcium concentration. Low intracellu-

lar pH (see above) stimulates proton efflux by way of proton

transporters and exchangers, increasing intracellular sodium

content.77 A high cell sodium content then may increase in-

tracellular calcium, through the Na/Ca exchanger, impairing

cellular function.77–79 Compounding this, the reduced func-

tion of the Na/H ATPase as a regulator of intracellular so-

dium in sepsis may not be adequate to limit cell swelling.77

Against this background of mechanistic concerns with the

use of bicarbonate treatment, it is not surprising that clinical

outcomes have been inconsistent at best. In animal models of

LA, the use of sodium bicarbonate has either negative effects

on cardiac output60,72 or no significant hemodynamic effect

when compared to sodium chloride infusion.67,80,81 One ani-

mal study did show some benefit with sodium bicarbonate

compared to saline, though all animals subsequently died.50

In humans, sodium bicarbonate was studied in 2

randomized trials of sepsis-induced LA.1,82 In a study by

Cooper et al.,1 14 critically-ill patients received sequential

infusions of sodium bicarbonate or sodium chloride. Neither

solution was superior to the other in terms of hemodynamic

improvement. No benefit was noted even when analysis was

limited to those with very low pH (<7.2). Mathieu et al.82

randomized 10 critically-ill patients to sequential infusion of

either sodium bicarbonate or sodium chloride. Similarly, no

significant difference in hemodynamic variables was noted.

When taken together, these studies evaluating sodium bicar-

bonate in LA fail to show convincing benefit and raise serious

questions about its detrimental effects. Extracellular pH may

be a misleading marker of success in the treatment of LA, given

its direct influence by sodium bicarbonate administration.

Treatment of LA and Use of Other Buffers
Other buffers (Carbicarb, dichloroacetate, and trometh-

amine [THAM]) have been studied for treatment of LA.

Human studies have not shown superiority of any of the

buffers as far as improving pH,83,84 hemodynamics, or

survival.85

Treatment of LA by Renal Replacement Therapy
Renal replacement therapy (RRT; dialysis and its variants)

has been studied for the treatment of severe acidosis. RRT

has a number of theoretical advantages over purely medical

therapies in the treatment of LA: it can deliver large quanti-

ties of base without contributing to volume overload; it can

directly remove lactate from the plasma; and it can mitigate

the effect of alkalinization on ionized calcium concentration

by delivering calcium.

In critically ill patients with intact liver function, continu-

ous venovenous hemofiltration (CVVH) appears to contrib-

ute very little (less then 3%) to overall lactate clearance.86

While outcome studies are limited, continuous dialysis

modalities consistently show improved resolution of acido-

sis of various types when compared to intermittent modal-

ities.87,88 As described above, this is related to base adminis-

tration and is not a surprising finding. There are no studies

comparing RRT and medical therapy with respect to clinical

outcomes in patients with LA.

Special Situations
Biguanides
Biguanide-induced LA can be due to impairment of hepatic

neoglucogenesis, in the case of metformin, or increasing he-

patic oxidative phosphorylation, in the case of phenformin.89

This infrequent complication90,91 is associated with a high

mortality.92 Proposed therapy has included the use of sodium

bicarbonate infusion.93 In this setting, it is unclear if the use

of bicarbonate alone improves clinical outcomes.94

Renal replacement therapy in a wide variety of formats

has been used to treat this condition.93,95–101 Metformin has

a high clearance during dialysis due to its low molecular

weight and lack of protein binding.97,98,102 Nonetheless, its

high volume of distribution suggests a longer dialysis time

would be more beneficial if the main goal is reducing met-

formin levels.97,103 The limited prospective literature and

lack of conclusive evidence about what levels of metformin

induce LA makes generalized recommendations about dura-

tion of hemodialysis purely speculative.104

NRTIs
The use of NRTIs is associated with LA due to impairment

of mitochondrial oxidative phosphorylation.105–108 This

uncommon complication, if not recognized early, is associ-

ated with a high mortality.101,109 Investigations are ongoing

into agents directed at improving mitochondrial function

such as riboflavin, thiamine, and L-carnitine.110–112 As with

biguanide-associated LA, RRT decisions should be individu-

alized based on metabolic circumstances.
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Lorazepam
Many intravenous medications are formulated in the

alcohol solvent, propylene glycol. Injectable lorazepam has

the highest proportional amount of propylene glycol

compared with other commonly used agents.113,114 The

kidney normally eliminates 12% to 50% of administered

propylene glycol via proximal tubule secretion.115 The re-

mainder is metabolized by the liver to form pyruvate and

lactate.114,116,117

When propylene glycol accumulates, as in cases of

reduced renal function, it results in hyperosmolarity, LA,

and can even induce additional kidney injury (probably

through proximal tubular cell necrosis).118

LA due to propylene glycol has been reported by many

authors and its incidence with high dose intravenous

(IV) lorazepam has been estimated to be as high as

19%.114,116,119,120 This disorder can frequently go unrecog-

nized, as many other factors that induce LA often coincide

in such patients. But when identified and promptly

addressed, its prognosis seems to be favorable.114

The best treatment is prevention, by avoiding the use of

IV lorazepam in patients with impaired renal function. Once

it is recognized, the drug should be promptly withdrawn. In

addition, removal by hemodialysis can quickly lower propyl-

ene glycol levels since it is a small, highly water soluble,

non-protein-bound molecule.121 As no rebound in the level

is expected, intermittent dialysis should be an acceptable

modality.117

Linezolid
Recently, Gram-positive bacteria in general and methicillin-

resistant Staphylococcus aureus in particular have emerged

as major causes of nosocomial and community-acquired

infections. Linezolid, an oxazolidinone, is increasingly used

to treat such infections. Several cases of LA have been asso-

ciated with linezolid.27,122,123 and a survey of the Infectious

Diseases Society of America (IDSA) Emerging Infections

Network members revealed that this complication was com-

monly encountered.124 Linezolid causes LA by mitochon-

drial toxicity125,126 and risk factors include prolonged expo-

sure and older age. Once the disorder is recognized, the

clinician should stop the drug immediately. Chemistries

should be monitored frequently in patients on long-term

therapy.

Conclusions
Many studies note the association between LA and adverse

outcomes.2,45–47 Though metabolic acidosis from elevated

lactate levels may negatively affect organ function, the evi-

dence supporting therapy specifically aimed at increasing

pH in these settings is consistently poor.3,127 Limitations

have included small numbers of subjects,1,82 variable out-

comes studied, and the inability to assess intracellular meta-

bolic stability.1,61 When taking these factors into account it

is hard to justify aggressive treatment of LA with mecha-

nisms aimed at raising pH. Literature on the treatment of

patients with LA and very low pH (below 7.2) is even more

limited.

Moreover, lactate elevations may not represent tissue hy-

poperfusion. Lactate may have an important role in improv-

ing energy metabolism. This represents 1 additional reason

to be hesitant when attempting to ‘‘normalize’’ pH in LA; we

may be disrupting the body’s physiologic response to sepsis.

A conflict for clinicians emerges, however, as lactate is often

used to define tissue ischemia. Obviously, more specific

markers of tissue hypoperfusion would be ideal.

Bicarbonate therapy is an understandably attractive

means to ‘‘improve’’ the acidemia, but there are serious

mechanistic concerns with it use. Moreover, neither animal

nor human studies, limited as they may be, show a convinc-

ing benefit. LA in the setting of acute kidney injury may be

best treated with renal replacement therapy with bicarbon-

ate-based buffers, but controlled trials are lacking.

A number of commonly used drugs can cause LA. A

heightened awareness on the part of clinicians will lead to

prompt recognition of these cases, and timely treatment.
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